
WEEK 3

Summary of week 3 (lectures 7, 8 and 9)

Lecture 7 commenced with an example similar to #7 on p. 41 of [VST]: solving
a system of simultaneous linear differential equations. The technique applies to
systems of the form

f
˜
′ = Af

˜
where A ∈ Mat(n × n, R) is given, f

˜
is an unknown n-component column vector

whose entries are differentiable functions R → R, and f
˜
′ is the column vector

obtained from f
˜

by differentiating each component. The trick is to make a change
of variables of the form

f
˜

= Tp
˜

form some appropriately chosen invertible T ∈ Mat(n × n, R). Doing this, the
system becomes Tp

˜
′ = ATp

˜
, or

p
˜
′ = T−1ATp

˜
.

This new system of equations has the same form as the original, but the coefficient
matrix has been changed from A to T−1AT . If T can be chosen so that T−1AT is
diagonal then a separation of variables is achieved, and the system becomes easy
to solve.

The example done in the lecture was as follows:

f ′(t) = 2f(t) + 3g(t)
g′(t) = 2f(t) + 7g(t)

(1)

and so the solution process involves diagonalizing the matrix

A =
(

2 3
2 7

)
.

It is assumed that you learnt how to do this in 1st year. The first step is to find
the eigenvalues; these are the solutions of

det
(

2− λ 3
2 7− λ

)
= 0.

Expanding the determinant gives (2− λ)(7− λ)− 6 = 0, or

λ2 − 9λ + 8 = 0.

The solutions are λ = 8 and λ = 1. These are the eigenvalues of A.
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Next we find an eigenvector for each of the eigenvalues. These are nonzero
vectors x

˜
satisfying (A− λI)x

˜
= 0

˜
. Taking λ = 8 first, the equations to be solved

become (
−6 3
2 −1

) (
x
y

)
=

(
0
0

)
.

The number of equations is the same as the number of unknowns; so one might
expect that the only solution is the trivial solution x = y = 0. But the fact that
the coefficient matrix has the form A− λI with λ an eigenvalue of A guarantees
that the equations are redundant, and hence that a nontrivial solution exists.
Indeed, in this case the first equation is clearly −3 times the second, and it is
clear that (

x
y

)
=

(
1
2

)
(2)

is one nontrivial solution. Similarly, the eigenvalue 1 leads to the system(
1 3
2 6

) (
x
y

)
=

(
0
0

)
,

and one nontrivial solution is (
x
y

)
=

(
3
−1

)
. (3)

The vectors in Eq. (2) and Eq. (3) are the eigenvectors we sought. Note that any
nonzero scalar multiple of an eigenvector is also an eigenvector, and so the vec-
tors we have chosen could be replaced by nonzero scalar multiples of themselves.
Different choices would be no better or worse than the choices we have made.

The change of variable matrix T should be chosen so that each of its columns
is an eigenvector for A. It also needs to be invertible, so that f

˜
= Tp

˜
gives

p
˜

= T−1f
˜

(so that f
˜

determines p
˜

and p
˜

determines f
˜
). Unless T is invertible

there is no guarantee that the transformed equations (involving p
˜
) are equivalent

to the original equations (involving f
˜
). Fortunately, if the columns of T are chosen

to be eigenvectors corresponding to distinct eigenvalues of A then it is guaranteed
that T is invertible. This is a theorem that we shall prove later in the semester.

In accordance with the above remarks, we introduce new unknown functions
p and q related to f and g via(

f(t)
g(t)

)
=

(
1 3
2 −1

) (
p(t)
q(t)

)
.

In other words, in non-matrix notation,

f(t) = p(t) + 3q(t),
g(t) = 2p(t)− q(t).

(4)

–2–



Differentiating (4) gives
f ′(t) = p′(t) + 3q′(t),
g′(t) = 2p′(t)− q′(t).

(5)

That is, we have f
˜
′ = Tp

˜
′ as well as f

˜
= Tp

˜
. Since the first column of T is an 8-

eigenvector of A and the second is a 1-eigenvector of A, it follows that AT = TD,
where D is the diagonal matrix whose first diagonal entry is 8 and second diagonal
entry is 1. You should check this by direct calculation:(

−6 3
2 −1

) (
1 3
2 −1

)
=

(
1 3
2 −1

) (
8 0
0 1

)
. (6)

Using Eq. (4) and Eq. (5) to convert Eq. (1) into a system in the new unknowns
p and q gives (

p′(t)
q′(t)

)
= T−1AT

(
p(t)
q(t)

)
=

(
8 0
0 1

) (
p(t)
q(t)

)
,

in view of Eq. (6). In non-matrix notation this becomes

p′(t) = 8p(t)
q′(t) = q(t)

which can be regarded as two separate one-unknown systems instead of a single
two-unknown system. This is a simplification, since for one-unknown systems the
solutions are easy to find. For the equations above the solution above is

p(t) = Ae8t

q(t) = Bet

where A and B are arbitrary constants. Using Eq. (4) to express this back in
terms of the original unknowns, we see that the solution of the original system is

f(t) = Ae8t + 3Bet

q(t) = 2Ae8t −Bet

where A and B are arbitrary.

The rest of Lecture 7, Lecture 8 and most of Lecture 9 dealt with §3d and §3e
of [VST] (pp. 63–77), although Propositions 3.15, 3.21 and 3.22 have not yet been
done in lectures. The key concept—and it is one of the most important concepts
in the course—is that of a subspace of a vector space.

–3–



Given a vector space V it is natural to enquire whether it is possible for a
subset of V to also be a vector space. In fact it is easy to find cases when this
occurs. For example, we know that

R3 =
{ x

y
z

 ∣∣∣ x, y, z ∈ R
}

is a vector space over R, with respect to the usual (componentwise) definitions of
addition and scalar multiplication. Let S be the subset of R3 consisting of those
triples for which x, y and z are all equal. That is,

S =
{ x

x
x

 ∣∣∣ x,∈ R
}

.

It is easily seen that S is also a vector space, addition and scalar multiplication
being defined on S in the same way as for R3 itself. By contrast, the set T given
by

T =
{ x

y
y + 1

 ∣∣∣ x, y ∈ R
}

is not a vector space over R, unless addition and scalar multiplication for T are
defined in some other way, incompatible with the definitions used for R3.

Suppose that V is a vector space over the field F , and that U ⊆ V is also
a vector space over F . If u

˜
, v
˜

are arbitrary elements of U then they are also
elements of V , and so u

˜
+ v

˜
can be interpreted either as a sum of elements of U ,

using the addition operation for U , or as a sum of elements of V, using the addition
operation for V . To say that these addition operations are compatible is to say
that the answer is the same whichever of them is used. But by definition the
sum of two elements of a vector space is also an element of that vector space;
so we must have that u

˜
+ v

˜
∈ U . So it is a consequence of this compatibility

requirement that applying V ’s addition operation to elements of V that happen
to lie in the subset U must give an element of U as the answer. Similarly, for the
scalar multiplication operations on U and V to be compatible it is necessary that
all scalar multiples of elements of V that lie in the subset U also lie in the subset U .
Thus the subset U of V is closed under addition and scalar multiplication, in the
sense of the following definition.

Definition. Let V be a vector space over the field F , and U a subset of V . Then
(i) U is closed under addition if u

˜
+ v

˜
∈ U for all u

˜
, v
˜
∈ U ;

(ii) U is closed under scalar multiplication if λu
˜
∈ U for all u

˜
∈ U and λ ∈ F.

It is clear that whenever U ⊆ V is closed under addition then the addition
operation on V gives rise to an addition operation on U . Similarly, if U is closed
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under scalar multiplication then the scalar multiplication on V gives rise to a scalar
multiplication on U . We say that U inherits addition and scalar multiplication
operations from V.

Definition. Let V be a vector space over the field F . A subspace of V is a subset
U of V that is closed under addition and scalar multiplication and is a vector space
over F with respect to the addition and scalar multiplication operations that it
inherits from V .

Examples
(1) Let S be the subset of R3 defined by

S =
{ a

b
c

 ∣∣∣ a, b, c ∈ Z
}

where Z is the set of all integers. Then S is closed under addition but not
closed under scalar multiplication.

(2) Let W be the subset of R3 defined by

W =
{ a

b
c

 ∣∣∣ a, b, c ∈ R and a = ±b
}

.

Then W is closed under scalar multiplication but not addition.
(3) It is vacuously true that the empty subset of R3 is closed under addition and

scalar multiplication. It is true that u
˜

+ v
˜
∈ ∅ whenever u

˜
, v
˜
∈ ∅, simply

because u
˜
, v
˜
∈ ∅ is something that never happens!

If V is a vector space and U ⊆ V is closed under addition and scalar mul-
tiplication then the fact that addition on V satisfies the associative law trivially
implies that the inherited addition on U also satisfies the associative law. The
fact that u

˜
+ (v

˜
+ w

˜
) = (u

˜
+ v

˜
) + w

˜
for all u

˜
, v
˜
, w

˜
∈ V certainly implies that

u
˜

+(v
˜
+w

˜
) = (u

˜
+v

˜
)+w

˜
for all u

˜
, v
˜
, w

˜
∈ U , simply because all elements of U are

elements of V . It is similarly obvious that the inherited operations satisfy most
of the other vector space axioms as well. In fact, there are only two axioms to
which this reasoning does not apply: the axiom that says that there is a the zero
element and the axiom that says that each element has a negative. To guarantee
that these axioms are also satisfied we need only assume in addition that the sub-
set U is nonempty. It can then be shown that the zero element of V must be in
the subset U , and that the negative of every element of U is in the subset U . It
then follows readily that U satisfies all the vector space axioms.

Theorem. If V is a vector space and U a subset of V that is nonempty and
closed under addition and scalar multiplication, then U is a subspace of V.
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See p. 64 of [VST] for the details of the proof.
The above theorem often provides the most convenient way to prove that

a given set is a vector space. Rather than going through all eight axioms and
verifying them one at a time, it is often possible to show that the set in question
is a subset of something that is already known to be a vector space (such as the
set of all scalar valued functions on some set) and then show that it is nonempty
and closed under addition and scalar multiplication.

For example, the set F consisting of all real-valued functions on [0, 1] is a
vector space over R, addition and scalar multiplication being defined as follows:
if f, g ∈ F and λ ∈ R then f + g, λf ∈ F are given by

(f + g)(t) = f(t) + g(t) for all t ∈ [0, 1]
(λf)(t) = λf(t) for all t ∈ [0, 1].

Now let C be the set consisting of all continuous functions [0, 1] → R. It is a
standard result of calculus that the sum of two continuous functions is continuous;
so C is closed under addition. It is similarly a standard fact that a scalar multiple
of a continuous function is continuous; so C is closed under scalar multiplication.
The zero element of F is the function z: [0, 1] → R defined by z(t) = 0 for all
t ∈ [0, 1]. This is certainly continuous; so z ∈ C , and hence z 6= ∅. Hence C is a
subspace of F . In particular, C is a vector space over R.

For another example, let I = { f ∈ C |
∫ 1

0
f(t) dt = 0 }. If z is the zero

function (defined above) then
∫ 1

0
z(t) dt =

∫ 1

0
0 dt = 0, and so z ∈ I . So I 6= ∅.

If f, g ∈ I and λ ∈ R then∫ 1

0

(f + g)(t) dt =
∫ 1

0

f(t) + g(t) dt =
∫ 1

0

f(t) dt +
∫ 1

0

g(t) dt = 0 + 0 = 0

and ∫ 1

0

(λf)(t) dt =
∫ 1

0

λf(t) dt = λ

∫ 1

0

f(t) dt = λ0 = 0

and so it follows that I is closed under addition and scalar multiplication. Hence
I is a subspace of C .

In this last example, the crucial thing that makes the proof work is that
the expression

∫ 1

0
f(t) dt depends linearly on f . To state this more precisely, the

function T :C → R defined by Tf =
∫ 1

0
f(t) dt is linear. In general, whenever we

have a linear function from one vector space to another the set of all elements
that are mapped to zero by the function constitutes a subspace of the domain of
the function. This subspace is called the kernel of the linear function in question.
It is also true that the image of the linear function is a subspace of the codomain.
See [VST] pp. 66–69 for the proofs.
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In Lecture 9 the following result was mentioned: if A ∈ Mat(m × n, F ) and
if T :Fn → Fm is defined by T (v

˜
) = Av

˜
for all v

˜
∈ Fn then T is linear. This

is proved in #11 on p. 59 of [VST]. (Note that there is a misprint in [VST] here:
where it says “Exercise 3 of Chapter 1” it should say “Exercise 3 of Chapter 2”.)
The kernel of this linear transformation is known as the right null space of the
matrix A, denoted by RN(A) (see Definition 7.24 of [VST]). Thus RN(A) is the set
of all solutions of the system of linear equations Ax

˜
= 0

˜
. As explained on p. 73

of [VST] the image of the function T is the column space, CS(A), of the matrix A.
By definition, this is the set of all linear combinations of the columns of A.

It is a general fact that if V is any vector space and v
˜
1, v

˜
2, . . . , v

˜
k arbitrary

elements of V then the set S consisting of all linear combinations of v
˜
1, v

˜
2, . . . , v

˜
k

is a subspace of V . We call S the Span of v
˜
1, v

˜
2, . . . , v

˜
k:

S = Span(v
˜
1, v

˜
2, . . . , v

˜
k) = {λ1v

˜
1 + λ2v

˜
2 + · · ·+ λkv

˜
k | λ1, λ2, . . . , λk ∈ F }.

The proof that S is a subspace is easy. Firstly, 0
˜

= 0v
˜
1 + 0v

˜
2 + · · ·+ 0v

˜
k ∈ S; so

S 6= ∅. Now suppose that x
˜
, y
˜
∈ S. Then

x
˜

= λ1v
˜
1 + λ2v

˜
2 + · · ·+ λkv

˜
k

y
˜

= µ1v
˜
1 + µ2v

˜
2 + · · ·+ µkv

˜
k

for some scalars λi, µi, and we see that

x
˜

+ y
˜

= (λ1 + µ1)v
˜
1 + (λ2 + µ2)v

˜
2 + · · ·+ (λk + µk)v

˜
k,

which is a linear combination of v
˜
1, v

˜
2, . . . , v

˜
k, and hence an element of S. Thus

S is closed under addition. Similarly, if x
˜
∈ S and λ is any scalar then

x
˜

= λ1v
˜
1 + λ2v

˜
2 + · · ·+ λkv

˜
k

for some scalars λi, and

λx
˜

= (λλ1)v
˜
1 + (λλ2)v

˜
2 + · · ·+ (λλk)v

˜
k ∈ S.

So S is also closed under scalar multiplication, as required.

Example

Let A be the following matrix in Mat(3× 4, R):

A =

 1 1 1 2
2 −1 −3 5
4 10 14 6

 .
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Define T : R4 → R3 by T (x
˜
) = Ax

˜
(for all x

˜
∈ R4). We shall find the right null

space of A; this amounts to solving the equations

x1 + x2 + x3 + 2x4 = 0
2x1 − x2 − 3x3 + 5x4 = 0

4x1 + 10x2 + 14x3 + 6x4 = 0.

The solution process should be familiar from last year: use row operations to
reduce the system to an echelon form. Let us go through the steps anyway. 1 1 1 2

2 −1 −3 5
4 10 14 6

 R2:=R2−2R1
R3:=R3−4R1−−−−−−−→

 1 1 1 2
0 −3 −5 1
0 6 10 −2


R3:=R3+2R2−−−−−−−→

 j1 1 1 2
0 j−3 −5 1
0 0 0 0

 .

When the echelon form is obtained, I recommend circling the leading entries of
the nonzero rows, as indicated.

Note that the entries in the first column of the matrix correspond to the
coefficients of x1 in the various equations, the entries in the second column cor-
respond to the coefficients of x2, and so on. The variables that correspond to
columns containing no circled entries are free: this means that they can be given
any values. The equations then determine the values of the other variables in
terms of the values given to the free variables. Thus in the system above x3 and
x4 are the free variables, and if we put x3 = s and x4 = t (arbitrary) then the
second equation gives x2 = (−5/3)s + (1/3)t, after which the first equation gives

x1 = −x2 − x3 − 2x4 = 5
3s− 1

3 t− s− 2t = 2
3s− 7

3 t.

So the general solution of the system is


x1

x2

x3

x4

 =


2
3s− 7

3 t

− 5
3s + 1

3 t
s
t

 = s


2
3

− 5
3

1
0

 + t


− 7

3
1
3
0
1


Thus we deduce that

RN(A) = Span




2
3

− 5
3

1
0

 ,


− 7

3
1
3
0
1


 .
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It is of course immediate from the definition that the column space of A is

CS(A) = Span

 1
2
4

 ,

 1
−1
10

 ,

 1
−3
14

 ,

 2
5
6

 .

Finally, students should take particular notice of the following two definitions,
which are of crucial importance in the theory. These are Definitions 3.17 and 3.18
of [VST].

Definition. Let V be a vector space over the field F .
(i) Elements v

˜
1, v

˜
2, . . . , v

˜
k ∈ V are said to span V if Span(v

˜
1, v

˜
2, . . . , v

˜
k) = V .

(ii) Elements v
˜
1, v

˜
2, . . . , v

˜
k ∈ V are said to be linearly independent if the only

solution of λ1v
˜
1 + λ2v

˜
2 + · · · + λkv

˜
k = 0

˜
for scalars λ1, λ2, . . . , λk is given

by λ1 = λ2 = · · · = λk = 0.

For example, suppose that v
˜
1, v

˜
2, . . . , v

˜
n ∈ Fm are columns of the m × n

matrix A. Then

A


λ1

λ2
...

λn

 = λ1v
˜
1 + λ2v

˜
2 + · · ·+ λnv

˜
n

and so to say that v
˜
1, v

˜
2, . . . , v

˜
n are linearly independent is to say that the only

solution of the system Ax
˜

= 0
˜

is given by x
˜

= 0
˜
. In other words, the columns of

the matrix A are linearly independent if and only if RN(A) = {0
˜
}.
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