Summary of week 6 (lectures 16, 17 and 18)

Every complex number α can be uniquely expressed in the form $\alpha=a+b \boldsymbol{i}$, where a, b are real and $\boldsymbol{i}=\sqrt{-1}$. The complex conjugate of α is then defined to be the complex number $a-b i$. We write $\bar{\alpha}$ for the complex conjugate of α.

Definition. Let V be a vector space over \mathbb{C}. An inner product on V is a function

$$
\begin{aligned}
V \times V & \rightarrow \mathbb{C} \\
(u, v) & \mapsto\langle u, v\rangle
\end{aligned}
$$

satisfying the following axioms: for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{C}$,
i) $(a)\langle u, \lambda v+\mu w\rangle=\lambda\langle u, v\rangle+\mu\langle u, w\rangle$;
(b) $\langle\lambda u+\mu v, w\rangle=\bar{\lambda}\langle u, w\rangle+\bar{\mu}\langle v, w\rangle$;
ii) $\langle u, v\rangle=\overline{\langle v, u\rangle}$;
iii) $\langle u, u\rangle \in \mathbb{R}$, and $\langle u, u\rangle>0$ if $u \neq 0$.

Note that the familiar "greater than" and "less than" relations for real numbers do not apply to complex numbers \dagger; so for the statement $\langle u, u\rangle>0$ to be meaningful, it is necessary for $\langle u, u\rangle$ to be a real number. Nevertheless, the part of Axiom iii) that says $\langle u, u\rangle \in \mathbb{R}$ is redundant, because it is a consequence of Axiom ii). Indeed, putting $v=u$ in Axiom ii) gives $\langle u, u\rangle=\overline{\langle u, u\rangle}$, which immediately implies that $\langle u, u\rangle \in \mathbb{R}$.

If V is a vector space over \mathbb{R} then an inner product on V is a function $V \times V \rightarrow \mathbb{R}$ satisfying i), ii) and iii) above for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$. In this case, of course, the complex conjugate signs can be omitted, since $\alpha=\bar{\alpha}$ when $\alpha \in \mathbb{R}$.

A real vector space equipped with an inner product is called a real inner product space or a Euclidean space, and a complex vector space equipped with an inner product is called a complex inner product space or a unitary space.

If V is a complex inner product space and $u \in V$ is fixed, then it follows from i) (a) that the function $f_{u}: V \rightarrow \mathbb{C}$ defined by

$$
f_{u}(v)=\langle u, v\rangle \quad(\text { for all } v \in V)
$$

is linear, and hence, by Proposition 3.12 of [VST], that $\langle u, \underset{\sim}{0}\rangle=0$. (Note that here $\underset{\sim}{0}$ denotes the zero element of V and 0 the zero of \mathbb{C}.) Since $\overline{0}=0$, it follows from ii) that $\langle\underset{\sim}{0}, u\rangle=0$ also.

There is further redundancy in the axioms: it is clear that ii) and i) (a) together imply i) (b).

[^0]A function f from one complex vector space to another is said to be semilinear or conjugate linear if $f(u+v)=f(u)+f(v)$ (for all u and v in the domain of f) and $f(\lambda u)=\bar{\lambda} f(u)$ for all u in the domain of f and all $\lambda \in \mathbb{C}$. Axiom i) (b) says that if $v \in V$ is fixed then $u \mapsto\langle u, v\rangle$ is a semilinear function $V \rightarrow \mathbb{C}$, while i) (a) says that if $u \in V$ is fixed then $v \mapsto\langle u, v\rangle$ is a linear function $V \rightarrow \mathbb{C}$. The inner product function is thus linear in one of its two variables and semilinear in the other; such functions are said to be sesquilinear. Because the complex conjugates disappear for real inner product spaces, the inner product is linear in both variables, or bilinear, in this case.

Definition. Vectors u, v in an inner product space V are said to be orthogonal if $\langle u, v\rangle=0$. A set S of vectors is said to be an orthonormal set if $\langle v, v\rangle=1$ for all $v \in S$ and $\langle u, v\rangle=0$ for all $u, v \in S$ with $u \neq v$.

Proposition 5.4 of [VST] was proved in lectures: it asserts that a sequence of vectors that are nonzero and pairwise orthogonal is necessarily linearly independent. Consequently, such a sequence of vectors must form a basis for the subspace it spans.

Definition. An orthogonal basis of an inner product space is a basis whose elements are pairwise orthogonal.

We also proved the following important lemma (5.5 of [VST]).
Lemma. Let $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ be an orthogonal basis of a subspace U of the inner product space V, and let $v \in V$. Then there is a unique element $u \in U$ such that $\langle x, u\rangle=\langle x, v\rangle$ for all $x \in U$, and it is given by $u=\sum_{i=1}^{n}\left(\left\langle u_{i}, v\right\rangle /\left\langle u_{i}, u_{i}\right\rangle\right) u_{i}$.

It is in fact true that every finite-dimensional inner product space has an orthogonal basis. Moreover, if the dimension is at least 1 then there will be infinitely many orthogonal bases. \dagger It is a consequence of Lemma 5.5 that if $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ are orthogonal bases of the same subspace U of V then $\sum_{i=1}^{n}\left(\left\langle u_{i}, v\right\rangle /\left\langle u_{i}, u_{i}\right\rangle\right) u_{i}=\sum_{i=1}^{n}\left(\left\langle w_{i}, v\right\rangle /\left\langle w_{i}, w_{i}\right\rangle\right) w_{i}$ for all $v \in V$. This was verified in Lecture 18 for the following example:

$$
\begin{gathered}
v=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \in V=\mathbb{R}^{3} ; \quad U=\left\{\left.\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}\right\} ; \\
\left(u_{1}, u_{2}\right)=\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right) ; \quad\left(w_{1}, w_{2}\right)=\left(\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)\right) .
\end{gathered}
$$

Other orthogonal bases of U, such as $\left(\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right)\right.$, give the same answer too.

[^1]Given any matrix $A \in \operatorname{Mat}(n \times n, \mathbb{R})$ we may define a function

$$
\begin{aligned}
R^{n} \times \mathbb{R}^{n} & \rightarrow R \\
(u, v) & \mapsto\langle u, v\rangle
\end{aligned}
$$

by the rule that $\langle u, v\rangle={ }^{\mathrm{t}} u A v$ for all $u, v \in \mathbb{R}^{n}$. This is always bilinear, as follows easily from standard properties of addition, multiplication and scalar multiplication for matrices. Indeed, if $\lambda, \mu \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^{n}$ are arbitrary then we have

$$
\begin{aligned}
\langle\lambda u+\mu v, w\rangle & ={ }^{\mathrm{t}}(\lambda u+\mu v) A w \\
& =\left(\lambda^{\mathrm{t}} u+\mu^{\mathrm{t}} v\right) A w \\
& =\lambda^{\mathrm{t}} u A w+\mu^{\mathrm{t}} v A w \\
& =\lambda\langle u, w\rangle+\mu\langle v, w\rangle,
\end{aligned}
$$

and a similar proof shows that $\langle u, \lambda v+\mu w\rangle=\lambda\langle u, v\rangle+\mu\langle u, w\rangle$. If A is a symmetric matrix, so that ${ }^{\mathrm{t}} A=A$, then the product $(u, v) \mapsto\langle u, v\rangle$ is symmetric, in the sense that $\langle u, v\rangle=\langle v, u\rangle$ for all u and v, since

$$
\langle u, v\rangle={ }^{\mathrm{t}}\langle u, v\rangle={ }^{\mathrm{t}}\left({ }^{\mathrm{t}} u A v\right)={ }^{\mathrm{t}} v A^{\mathrm{t}}\left({ }^{\mathrm{t}} u\right)=\langle v, u\rangle .
$$

A symmetric matrix A is said to be positive definite if ${ }^{\mathrm{t}} u A u>0$ for all nonzero $u \in \mathbb{R}^{n}$. When this condition is satisfied, $\langle u, v\rangle={ }^{\mathrm{t}} u A v$ defines an inner product on \mathbb{R}^{n}.

If ${ }^{\mathrm{t}} u=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and ${ }^{\mathrm{t}} v=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ then

$$
{ }^{\mathrm{t}} u A v=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} y_{j}
$$

Hence we find that

$$
{ }^{\mathrm{t}} u A u=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{i=1}^{n} \sum_{j=i+1}^{n}\left(a_{i j}+a_{j i}\right) x_{i} x_{j}
$$

and if A is symmetric this becomes

$$
{ }^{\mathrm{t}} u A u=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_{i j} x_{i} x_{j} .
$$

Such an expression is called a quadratic form in the variables $x_{1}, x_{2}, \ldots, x_{n}$ over the field \mathbb{R}. It is possible to use the technique known as completing the square to write any such expression in the form

$$
\sum_{i=1}^{n} \varepsilon_{i}\left(\lambda_{i 1} x_{1}+\lambda_{i 2} x_{2}+\cdots+\lambda_{i n} x_{n}\right)^{2}
$$

where the coefficents ε_{i} are all either 0,1 or -1 , and the matrix whose (i, j) entry is $\lambda_{i j}$ is invertible. Although we have not yet proved this result in lectures, some examples were given to illustrate the technique, and there are some other examples in [VST]. The matrix A is positive definite if and only if all the coefficients ε_{i} are equal to 1 .

By Lemma 5.5, if U is a subspace of the inner product space V such that U has a finite orthogonal basis, there is a function $P: V \rightarrow U$ such that $\langle x, P(v)\rangle=\langle x, v\rangle$ for all $v \in V$ and all $x \in U$. Equivalently, $\langle x, v-P(v)\rangle=0$ for all $v \in V$ and $x \in U$. The function P is called the orthogonal projection of V onto U. It follows readily from the formula

$$
P(v)=\sum_{i=1}^{n}\left(\left\langle u_{i}, v\right\rangle /\left\langle u_{i}, u_{i}\right\rangle\right) u_{i}
$$

(where $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is any orthogonal basis for U) that P is a linear map.
We can use orthogonal projections to show that every finite-dimensional inner product space has an orthogonal basis. More generally, suppose that V is an inner product space and

$$
U_{1} \subset U_{2} \subset \cdots U_{d}
$$

is an increasing sequence of subspaces, with $\operatorname{dim} U_{i}=i$ for all i; then it is possible to find elements $u_{1}, u_{2}, \ldots u_{d}$ such that $\left(u_{1}, u_{2}, \ldots u_{r}\right)$ is an orthogonal basis of U_{r}, for each $r \in\{1,2, \ldots, d\}$.

The procedure is inductive. First, note that since the dimension of U_{1} is 1 , all the nonzero elements of U_{1} are scalar multiples of each other. Choose u_{1} to be any nonzero element of U_{1}. Now, proceeding inductively, suppose that $1<r \leq d$ and that we have already found elements $u_{1}, u_{2}, \ldots, u_{r-1}$ that are pairwise orthogonal and comprise a basis for U_{r-1}. Since $\operatorname{dim} U_{r}=r>r-1=\operatorname{dim} U_{r-1}$, we can certainly find an element $v \in U_{r}$ such that $v \notin U_{r-1}$. Choose any such v, and put $u_{r}=v-P(v)$, where P is the orthogonal projection from U_{r} to U_{r-1}. We know that this orthogonal projection exists since our inductive hypothesis has given us an orthogonal basis for U_{r-1}. Observe that $u_{r} \neq 0$, since $P(v) \in U_{r-1}$ and $v \notin U_{r-1}$. Now by the defining property of orthogonal projections we know that $\left\langle x, u_{r}\right\rangle=\langle x, v-P(v)\rangle=0$ for all $x \in U_{r-1}$. Hence $\left\langle u_{j}, u_{r}\right\rangle=0$ for each $j \in\left\{1,2, \ldots, u_{r-1}\right\}$. Since also $u_{1}, u_{2}, \ldots, u_{r-1}$ are pairwise orthogonal, it follows that $u_{1}, u_{2}, \ldots, u_{r}$ are pairwise orthogonal. By Proposition 5.4 it follows that $u_{1}, u_{2}, \ldots, u_{r}$ are linearly independent. Since they all lie in the r-dimensional space U_{r}, they form a basis for this space. So $\left(u_{1}, u_{2}, \ldots, u_{r}\right)$ is an orthogonal basis of U_{r}, and this completes the inductive proof.

The Gram-Schmidt orthogonalization process is a procedure that starts with a linearly independent sequence of vectors $\left(v_{1}, v_{2}, \ldots, v_{d}\right)$ in an inner product space and produces an orthogonal sequence of vectors $\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ such that $\operatorname{Span}\left(u_{1}, u_{2}, \ldots, u_{r}\right)=\operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ for all r from 1 to d. The relevant formulas (which were given in lectures) can be found on p. 108 of [VST].

Note in particular that if U is any finite-dimensional subspace of the inner product space V then an orthogonal basis for U can be found, and therefore the projection of V onto U exists.

In any inner product space V the distance between elements $u, v \in V$ is defined to be the real number $d(u, v)=\|u-v\|$. It follows from iii) of the definition of inner product that $d(u, v)>0$ if $u \neq v$. Pythagoras's Theorem, which seems to have been accidentally omitted from [VST], states that if u is orthogonal to v then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$. The proof is straightforward:

$$
\|u+v\|^{2}=\langle(u+v),(u+v)\rangle=\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle=\|u\|^{2}+\|v\|^{2}
$$

since orthogonality gives $\langle u, v\rangle=\langle v, u\rangle=0$. It follows that if $u, v, w \in V$ and $u-v$ is orthogonal to $v-w$ then $d(u, w)^{2}=d(u, v)^{2}+d(v, w)^{2}$.

Now suppose that if P is the orthogonal projection of V onto a subspace U, and let $v \in V$. Then $P(v) \in U$ and $v-P(v)$ is orthogonal to all elements of U. If $x \in U$ is arbitrary then $P(v)-x \in U$, and so, by Pythagoras,

$$
d(v, x)^{2}=d(v, P(v))^{2}+d(P(v), x)^{2}
$$

It follows that $d(v, x) \geq d(v, P(v))$, with equality if and only if $d(P(v), x)=0$. But $d(P(v), x)=0$ if and only if $x=P(v)$. Consequently $P(v)$ can be characterized as the element $x \in U$ for which $d(v, x)$ is minimal.

[^0]: \dagger If "greater than" were defined for complex numbers in such a way that $\alpha>0$ and $\beta>0$ imply $\alpha \beta>0$, and every nonzero α satisfies either $\alpha>0$ or $-\alpha>0$, then it would follow that $\alpha^{2}>0$ for all $\alpha \neq 0$, and hence $\beta>0$ for all nonzero $\beta \in \mathbb{C}$.

[^1]: \dagger A zero-dimensional space has just one element-its zero element-and just one basis: the empty set.

