
WEEK 6

Summary of week 6 (lectures 16, 17 and 18)

Every complex number α can be uniquely expressed in the form α = a + bi,
where a, b are real and i =

√
−1. The complex conjugate of α is then defined to

be the complex number a− bi. We write α for the complex conjugate of α.

Definition. Let V be a vector space over C. An inner product on V is a function

V × V → C
(u, v) 7→ 〈u, v〉

satisfying the following axioms: for all u, v, w ∈ V and λ, µ ∈ C,
i) (a) 〈u, λv + µw〉 = λ〈u, v〉+ µ〈u, w〉;

(b) 〈λu + µv, w〉 = λ〈u, w〉+ µ〈v, w〉;
ii) 〈u, v〉 = 〈v, u〉;
iii) 〈u, u〉 ∈ R, and 〈u, u〉 > 0 if u 6= 0.

Note that the familiar “greater than” and “less than” relations for real num-
bers do not apply to complex numbers†; so for the statement 〈u, u〉 > 0 to be
meaningful, it is necessary for 〈u, u〉 to be a real number. Nevertheless, the part
of Axiom iii) that says 〈u, u〉 ∈ R is redundant, because it is a consequence of
Axiom ii). Indeed, putting v = u in Axiom ii) gives 〈u, u〉 = 〈u, u〉, which imme-
diately implies that 〈u, u〉 ∈ R.

If V is a vector space over R then an inner product on V is a function
V × V → R satisfying i), ii) and iii) above for all u, v, w ∈ V and λ, µ ∈ R.
In this case, of course, the complex conjugate signs can be omitted, since α = α
when α ∈ R.

A real vector space equipped with an inner product is called a real inner
product space or a Euclidean space, and a complex vector space equipped with an
inner product is called a complex inner product space or a unitary space.

If V is a complex inner product space and u ∈ V is fixed, then it follows from
i) (a) that the function fu:V → C defined by

fu(v) = 〈u, v〉 (for all v ∈ V )

is linear, and hence, by Proposition 3.12 of [VST], that 〈u, 0
˜
〉 = 0. (Note that here

0
˜

denotes the zero element of V and 0 the zero of C.) Since 0 = 0, it follows
from ii) that 〈0

˜
, u〉 = 0 also.

There is further redundancy in the axioms: it is clear that ii) and i) (a)
together imply i) (b).

† If “greater than” were defined for complex numbers in such a way that α > 0 and
β > 0 imply αβ > 0, and every nonzero α satisfies either α > 0 or −α > 0, then it would
follow that α2 > 0 for all α 6= 0, and hence β > 0 for all nonzero β ∈ C.
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A function f from one complex vector space to another is said to be semilinear
or conjugate linear if f(u + v) = f(u) + f(v) (for all u and v in the domain of f)
and f(λu) = λf(u) for all u in the domain of f and all λ ∈ C. Axiom i) (b)
says that if v ∈ V is fixed then u 7→ 〈u, v〉 is a semilinear function V → C, while
i) (a) says that if u ∈ V is fixed then v 7→ 〈u, v〉 is a linear function V → C. The
inner product function is thus linear in one of its two variables and semilinear
in the other; such functions are said to be sesquilinear. Because the complex
conjugates disappear for real inner product spaces, the inner product is linear in
both variables, or bilinear, in this case.

Definition. Vectors u, v in an inner product space V are said to be orthogonal
if 〈u, v〉 = 0. A set S of vectors is said to be an orthonormal set if 〈v, v〉 = 1 for
all v ∈ S and 〈u, v〉 = 0 for all u, v ∈ S with u 6= v.

Proposition 5.4 of [VST] was proved in lectures: it asserts that a sequence of
vectors that are nonzero and pairwise orthogonal is necessarily linearly indepen-
dent. Consequently, such a sequence of vectors must form a basis for the subspace
it spans.

Definition. An orthogonal basis of an inner product space is a basis whose
elements are pairwise orthogonal.

We also proved the following important lemma (5.5 of [VST]).

Lemma. Let (u1, u2, . . . , un) be an orthogonal basis of a subspace U of the inner
product space V , and let v ∈ V . Then there is a unique element u ∈ U such that
〈x, u〉 = 〈x, v〉 for all x ∈ U , and it is given by u =

∑n
i=1

(
〈ui, v〉/〈ui, ui〉

)
ui.

It is in fact true that every finite-dimensional inner product space has an or-
thogonal basis. Moreover, if the dimension is at least 1 then there will be infinitely
many orthogonal bases.† It is a consequence of Lemma 5.5 that if (u1, u2, . . . , un)
and (w1, w2, . . . , wn) are orthogonal bases of the same subspace U of V then∑n

i=1

(
〈ui, v〉/〈ui, ui〉

)
ui =

∑n
i=1

(
〈wi, v〉/〈wi, wi〉

)
wi for all v ∈ V . This was veri-

fied in Lecture 18 for the following example:

v =

 1
1
1

 ∈ V = R3; U =
{ x

y
0

 ∣∣∣ x, y ∈ R
}

;

(u1, u2) =
( 1

0
0

 ,

 0
1
0

)
; (w1, w2) =

( 1
1
0

 ,

 1
−1
0

)
.

Other orthogonal bases of U , such as (

 2
1
0

 ,

 1
−2
0

), give the same answer too.

† A zero-dimensional space has just one element—its zero element—and just one
basis: the empty set.

–2–



Given any matrix A ∈ Mat(n× n, R) we may define a function

Rn × Rn → R

(u, v) 7→ 〈u, v〉

by the rule that 〈u, v〉 = tuAv for all u, v ∈ Rn. This is always bilinear, as follows
easily from standard properties of addition, multiplication and scalar multiplica-
tion for matrices. Indeed, if λ, µ ∈ R and u, v, w ∈ Rn are arbitrary then we
have

〈λu + µv, w〉 = t(λu + µv)Aw

= (λ tu + µ tv)Aw

= λ tuAw + µ tvAw

= λ〈u, w〉+ µ〈v, w〉,

and a similar proof shows that 〈u, λv+µw〉 = λ〈u, v〉+µ〈u, w〉. If A is a symmetric
matrix, so that tA = A, then the product (u, v) 7→ 〈u, v〉 is symmetric, in the sense
that 〈u, v〉 = 〈v, u〉 for all u and v, since

〈u, v〉 = t〈u, v〉 = t( tuAv) = tvA t(tu) = 〈v, u〉.

A symmetric matrix A is said to be positive definite if tuAu > 0 for all nonzero
u ∈ Rn. When this condition is satisfied, 〈u, v〉 = tuAv defines an inner product
on Rn.

If tu = (x1, x2, . . . , xn) and tv = (y1, y2, . . . , yn) then

tuAv =
n∑

i=1

n∑
j=1

aijxiyj .

Hence we find that

tuAu =
n∑

i=1

aiix
2
i +

n∑
i=1

n∑
j=i+1

(aij + aji)xixj ,

and if A is symmetric this becomes

tuAu =
n∑

i=1

aiix
2
i + 2

n∑
i=1

n∑
j=i+1

aijxixj .

Such an expression is called a quadratic form in the variables x1, x2, . . . , xn over
the field R. It is possible to use the technique known as completing the square to
write any such expression in the form

n∑
i=1

εi(λi1x1 + λi2x2 + · · ·+ λinxn)2
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where the coefficents εi are all either 0, 1 or −1, and the matrix whose (i, j) entry
is λij is invertible. Although we have not yet proved this result in lectures, some
examples were given to illustrate the technique, and there are some other examples
in [VST]. The matrix A is positive definite if and only if all the coefficients εi are
equal to 1.

By Lemma 5.5, if U is a subspace of the inner product space V such that U has
a finite orthogonal basis, there is a function P :V → U such that 〈x, P (v)〉 = 〈x, v〉
for all v ∈ V and all x ∈ U . Equivalently, 〈x, v − P (v)〉 = 0 for all v ∈ V and
x ∈ U . The function P is called the orthogonal projection of V onto U . It follows
readily from the formula

P (v) =
n∑

i=1

(
〈ui, v〉/〈ui, ui〉

)
ui

(where (u1, u2, . . . , un) is any orthogonal basis for U) that P is a linear map.
We can use orthogonal projections to show that every finite-dimensional inner

product space has an orthogonal basis. More generally, suppose that V is an inner
product space and

U1 ⊂ U2 ⊂ · · ·Ud

is an increasing sequence of subspaces, with dim Ui = i for all i; then it is possible
to find elements u1, u2, . . . ud such that (u1, u2, . . . ur) is an orthogonal basis of
Ur, for each r ∈ {1, 2, . . . , d}.

The procedure is inductive. First, note that since the dimension of U1 is 1, all
the nonzero elements of U1 are scalar multiples of each other. Choose u1 to be any
nonzero element of U1. Now, proceeding inductively, suppose that 1 < r ≤ d and
that we have already found elements u1, u2, . . . , ur−1 that are pairwise orthogonal
and comprise a basis for Ur−1. Since dim Ur = r > r − 1 = dim Ur−1, we can
certainly find an element v ∈ Ur such that v /∈ Ur−1. Choose any such v, and
put ur = v − P (v), where P is the orthogonal projection from Ur to Ur−1. We
know that this orthogonal projection exists since our inductive hypothesis has
given us an orthogonal basis for Ur−1. Observe that ur 6= 0, since P (v) ∈ Ur−1

and v /∈ Ur−1. Now by the defining property of orthogonal projections we know
that 〈x, ur〉 = 〈x, v − P (v)〉 = 0 for all x ∈ Ur−1. Hence 〈uj , ur〉 = 0 for each
j ∈ {1, 2, . . . , ur−1}. Since also u1, u2, . . . , ur−1 are pairwise orthogonal, it follows
that u1, u2, . . . , ur are pairwise orthogonal. By Proposition 5.4 it follows that
u1, u2, . . . , ur are linearly independent. Since they all lie in the r-dimensional
space Ur, they form a basis for this space. So (u1, u2, . . . , ur) is an orthogonal
basis of Ur, and this completes the inductive proof.

The Gram-Schmidt orthogonalization process is a procedure that starts with
a linearly independent sequence of vectors (v1, v2, . . . , vd) in an inner product
space and produces an orthogonal sequence of vectors (u1, u2, . . . , ud) such that
Span(u1, u2, . . . , ur) = Span(v1, v2, . . . , vr) for all r from 1 to d. The relevant
formulas (which were given in lectures) can be found on p.108 of [VST].
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Note in particular that if U is any finite-dimensional subspace of the inner
product space V then an orthogonal basis for U can be found, and therefore the
projection of V onto U exists.

In any inner product space V the distance between elements u, v ∈ V is
defined to be the real number d(u, v) = ‖u−v‖. It follows from iii) of the definition
of inner product that d(u, v) > 0 if u 6= v. Pythagoras’s Theorem, which seems to
have been accidentally omitted from [VST], states that if u is orthogonal to v then
‖u + v‖2 = ‖u‖2 + ‖v‖2. The proof is straightforward:

‖u + v‖2 = 〈(u + v), (u + v)〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉 = ‖u‖2 + ‖v‖2

since orthogonality gives 〈u, v〉 = 〈v, u〉 = 0. It follows that if u, v, w ∈ V and
u− v is orthogonal to v − w then d(u, w)2 = d(u, v)2 + d(v, w)2.

Now suppose that if P is the orthogonal projection of V onto a subspace U ,
and let v ∈ V . Then P (v) ∈ U and v−P (v) is orthogonal to all elements of U . If
x ∈ U is arbitrary then P (v)− x ∈ U , and so, by Pythagoras,

d(v, x)2 = d(v, P (v))2 + d(P (v), x)2.

It follows that d(v, x) ≥ d(v, P (v)), with equality if and only if d(P (v), x) = 0. But
d(P (v), x) = 0 if and only if x = P (v). Consequently P (v) can be characterized
as the element x ∈ U for which d(v, x) is minimal.
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