
WEEK 7

Summary of week 7 (lectures 19, 20 and 21)

Recall that if A is an n×p matrix over the field R then the column space of A,
which by definition is the subspace of Rn consisting of all linear combinations of
the columns of A, is given by

CS(A) = {Au | u ∈ Rp }.

We address the following problem: given b ∈ Rn, find an element u ∈ Rp such
that Au is as close as possible to b. In other words, we wish to find u ∈ Rp such
that Au = P (b), where P is the orthogonal projection from Rn to CS(A). We
remark that although P (b) is uniquely determined by b and A, and the equation
Au = P (b) is guaranteed to have a solution u, the solution need not be unique.
However, if the columns of A are linearly independent then they form a basis
of CS(A); in this case each element of CS(A) is uniquely expressible as a linear
combination of the columns of A, and so the u such that Au = P (b) will be unique.

From the discussion of orthogonal projections in last week’s lectures, we know
that P (b) is the unique element of CS(A) such that b − P (b) is orthogonal to all
elements of CS(A). Thus we require u ∈ Rp to satisfy

(Av) · (b−Au) = 0 (1)

for all v ∈ Rp. Note that if x and y are column vectors then tx is a row vector,
and the dot product x · y is the same as the matrix product (tx)y. (Note that
1 × 1 matrices are identified with scalars; similarly, row and column vectors are
identified with matrices having a single row or column.) Since t(Av) = (tv)(tA),
Eq. (1) gives

(tv)(tA)(b−Au) = 0.

So, writing y = (tA)(b − Au), we see that y is a column vector (in Rp) with the
property that (tv)y = 0 for all v ∈ Rp. That is, v ·y = 0 for all v ∈ Rp. This forces
y to be the zero vector, as no nonzero vector can be orthogonal to all vectors v.
(Indeed, if v · y = 0 for all v then, in particular, y · y = 0, and by the positive
definiteness of the dot product this forces y = 0.)

We have shown that if Au = P (b) then (tA)(b−Au) = 0. It is trivially checked
that, conversely, if (tA)(b−Au) = 0 then (Av) · (b−Au) = 0 for all v ∈ Rp, and so
Au = P (b). Now (tA)(b−Au) = (tA)b− (tA)Au, and so Au = P (b) if and only if

(tA)Au = (tA)b. (2)

Given b, this is a system of p linear equations for the p unknowns that are the
entries of u. The equations have a unique solution U if and only if the coefficient
matrix (tA)A is invertible; from the discussion above we know that this occurs if
the columns of A are linearly independent.
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For example, suppose that

A =


1 a1

1 a2
...

...
1 an

 , b =


b1

b2
...

bn

 .

Then we find that

(tA)b =
(

1 1 . . . 1
a1 a2 . . . an

) 
b1

b2
...

bn

 =
( ∑

bi∑
aibi

)

(tA)A =
(

1 1 . . . 1
a1 a2 . . . an

) 
1 a1

1 a2
...

...
1 an

 =
(

n
∑

ai∑
ai

∑
a2

i

)
.

If the numbers a1, a2, . . . , an are not all equal then the unique solution to Eq. (2)
is given by

u =
(

n
∑

ai∑
ai

∑
a2

i

)−1 ( ∑
bi∑

aibi

)
.

We now give an important practical application of the above theory. Suppose
that we are given n pairs of real numbers, (a1, b1), (an, b2), . . . , (an, bn), and we
plot these as n points in the Cartesian plane (using the ai as the x-cordinates and
the bi as the y-coordinates). We wish to find the “line of best fit”: the straight
line that is, in some sense, as close as possible to all the points.

Of course, we need a way of deciding how close a line is to a set of points.
However, it is helpful to reformulate the problem before attempting to say how
closeness should be measured.

If the line has equation y = c + mx then the n points (ai, bi) all lie on the
line if the n equations c + mai = bi are all satisfied. These n equations can be
written as a single vector equation

c


1
1
...
1

 + m


a1

a2
...

an

 =


b1

b2
...

bn

 , (3)

or, equivalently, as a matrix equation
1 a1

1 a2
...

...
1 an

 (
c
m

)
=


b1

b2
...

bn

 . (4)
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The numbers ai and bi are given, and the task is to find c and m. If there is a
straight line passing through all the points then c and m can be chosen so that
Eq. (4) holds. If there is no straight line passing through all the points then we
want to choose c and m so that the left hand side of Eq. (4) is as close as possible
to the right hand side.

Formulated in this way, the problem becomes the same as the problem we
solved above. In effect, we are saying that the distance from the line y = c + mx
to the set of points {(a1, b1), (a2, b2), . . . , (an, bn)} can be identified with∥∥∥∥∥∥∥∥


c + ma1

c + ma2
...

c + man

−


b1

b2
...

bn


∥∥∥∥∥∥∥∥ ,

the distance between two vectors in Rn, and the line of best fit is to be found by
minimizing this quantity. Now∥∥∥∥∥∥∥∥


c + ma1

c + ma2
...

c + man

−


b1

b2
...

bn


∥∥∥∥∥∥∥∥

2

=
n∑

i=1

(c + mai)− bi)2,

and ((c+mai)− bi)2 is the square of the distance in R2 between the points (ai, bi)
and (ai, c+mai). The point (ai, c+mai) is the point on the line y = c+mx that
has the same x-coordinate as (ai, bi). Thus the line of best fit can be characterized

as the line that minimizes S, the sum of the squares† of the vertical distances from

(a1,b1)

(a2,b2)

(a3,b3)

(a4,b4)

(a5,b5)

d1

d2

d3
d4

d5di = |(c + mai) − bi|
S = d2

1 + d2
2 + d2

3 + d2
4 + d2

5

y=c+mx

the data points to the line. As we saw above, the coefficients c and m are given
by the formula (

c
m

)
=

(
n

∑
ai∑

ai

∑
a2

i

)−1 ( ∑
bi∑

aibi

)
.

† For this reason, it is commonly called the least squares line of best fit.
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For example, let us find the line of best fit for the points (0, 1), (1, 2), (1, 3)
and (2, 5). We have the following table of values

i 1 2 3 3

ai 0 1 1 3
bi 1 2 3 5

aibi 0 2 3 10
a2

i 0 1 1 4

and we conclude that the line of best fit is y = c + mx, where(
c
m

)
=

(
n

∑
ai∑

ai

∑
a2

i

)−1 ( ∑
bi∑

aibi

)
=

(
4 4
4 6

)−1 (
11
15

)
=

1
8

(
6 −4
−4 4

)−1 (
11
15

)
=

(
3/4
2

)
.

The line of best fit is y = (3/4) + 2x.

A similar analysis can be applied to the problem of finding the least squares
best fitting parabola y = c + dx + ex2 for a given set of data points. Indeed, the
same procedure can be applied for polynomials of any given degree, and other
families of curves as well. For the case y = c + dx + ex2, the task is to find c, d, e
so that

c


1
1
...
1

 + d


a1

a2
...

an

 + e


a2
1

a2
2
...

a2
n

 ≈


b1

b2
...

bn

 ,

where ‘≈’ means ‘as close as possible to’. The required c, d, e have the property
that 

1 a1 a2
1

1 a2 a2
2

...
...

...
1 an a2

n


 c

d
e

 = P


b1

b2
...

bn


where P is the projection of Rn onto the column space of the matrix

A =


1 a1 a2

1

1 a2 a2
2

...
...

...
1 an a2

n

 .
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By calculations similar to those given above, we find that

tAA

 c
d
e

 = tA


b1

b2
...

bn

 ,

and if the columns of A are linearly independent then the unique solution is c
d
e

 =

 n
∑

ai

∑
a2

i∑
ai

∑
a2

i

∑
a3

i∑
a2

i

∑
a3

i

∑
a4

i

−1  ∑
bi∑

aibi∑
a2

i bi

 .

It can be shown that the columns of A are linearly independent provided there
are at least two distinct numbers in the set {a1, a2, . . . , an}.

A large part of Lecture 20 was devoted to a discussion of Fourier series,
essentially as in #9 on p. 113 of [VST]. We consider the set C ′ consisting of all
continuous functions f :R → R such that f(x) = f(x + 2π) for all x ∈ R. It is
clear that C ′ is a subspace of the space of all functions R → R, and since any f
such that f(x) = f(x + 2π) for all x is uniquely determined by its restriction to
[−π, π], the space C ′ can, in effect, be identified with the space of all continuous
functions on [−π, π] that take the same value at π as at −π. We can make C ′

into an inner product space by defining 〈f, g〉 =
∫ π

−π
f(x)g(x) dx for all f, g ∈ C ′.

You should all remember, from secondary school mathematics, the formu-
las for sin(α + β) and cos(α + β), and be able to use these to derive (in a few
seconds) the formulas for the products 2 sin(nx) cos(mx), 2 cos(nx) cos(mx) and
2 sin(nx) sin(mx) given on p. 113 of [VST]. Using these formulas it can be shown
(see [VST]) that the functions c0, s1, c1, s2, c2, . . . , sk, ck form an orthogonal ba-
sis of a subspace of C ′. Let us call this space Ck, and let P be the orthogonal
projection from C ′ to Ck. By Lemma 5.5 of [VST], if f is an arbitrary element of
C ′ then P (f) is given by

P (f) =
〈c0, f〉
〈c0, c0〉

c0 +
〈s1, f〉
〈s1, s1〉

s1 +
〈c1, f〉
〈c1, c1〉

c1 + · · ·+ 〈ck, f〉
〈ck, ck〉

ck,

and P (f) is the best approximation to f by an element of Ck. Here the “best
approximation to f” means the function g ∈ Ck such that

∫ π

−π
(f(x)− g(x)2 dx is

minimal.

If α ∈ C then αα = |α|2; so if V is a complex inner product space and v ∈ V
then for all α ∈ C,

‖αv‖ = 〈αv, αv〉 = α〈v, αv〉 = αα〈v, v〉 = |α|2‖v‖

(by the fact that the inner product is semilinear in the first variable and linear
in the second). In particular, if we put α = 1

‖v‖ then we obtain ‖αv‖ = 1. It
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follows that an orthogonal sequence of vectors v1, v2, . . . , vn can be converted
into an orthonormal sequence of vectors u1, u2, . . . , un by dividing each vector in
the sequence by its own length. That is, we define ui = 1

‖vi‖vi. This process is
known as normalizing the vectors.

If u1, u2, . . . , un is an orthonormal basis of V then


λ1

λ2
...

λn

 7→ λ1u1 + λ2u2 + · · ·+ λnun

is a bijective linear map—that is, a vector space isomorphism—from Cn to V .
Writing f for this map, we find that for all λi, µi ∈ C,

〈
f


λ1

λ2
...

λn

 , f


µ1

µ2
...

µn

〉
= 〈

n∑
i=1

λiui,
n∑

j=1

µjuj〉

=
n∑

i=1

n∑
j=1

λiµj〈ui, uj〉

=
n∑

i=1

λiµj since 〈ui, uj〉 =
{

0 if i 6= j
1 if i = j

=


λ1

λ2
...

λn

 ·


µ1

µ2
...

µn

 .

We can express this property in words by saying that the vector space isomorphism
f preserves inner products, and illustrate it, in a way, with the diagram below.

Cn (with dot product) V (with inner product 〈 , 〉)


λ1

λ2
...

λn


 ,




µ1

µ2
...

µn




∑
λiui,

∑
µiui




λ1

λ2
...

λn


 ·




µ1

µ2
...

µn


 = 〈∑ λiui,

∑
µiui〉

C
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The upshot is that V with the inner product 〈 , 〉 is essentially just a copy of Cn

with the dot product.

If u1, u2, . . . , un is an orthonormal basis of V and v ∈ V then there exist
scalars λi such that

v = λ1u1 + λ2u2 + · · ·+ λnun.

It is easy to compute the λi, since

〈ui, v〉 = 〈ui,
∑

j

λjuj〉 =
∑

j

λj〈ui, uj〉 = λi

(since 〈ui, uj〉 = 0 for all j 6= i, and 〈ui, uj〉 = 1). Thus

v = 〈u1, v〉u1 + 〈u2, v〉u2 + · · ·+ 〈un, v〉un. (5)

This formula works for all v ∈ V and all orthonormal bases u1, u2, . . . , un. Ob-
serve, consequently, that for all v, v′ ∈ V we have that

〈v, v′〉 = 〈
∑

i

〈ui, v〉ui,
∑

j

〈uj , v
′〉uj〉 =

∑
i

〈ui, v〉〈uj , v
′〉uj .

Of course, this is the same as the dot product
〈u1, v〉
〈u2, v〉

...
〈un, v〉

 ·


〈u1, v〉
〈u2, v〉

...
〈un, v〉


since, as explained above, inner products are preserved by the vector space iso-
morphism Cn → V that the orthonormal basis u1, u2, . . . , un provides.

For a basis v1, v2, . . . , vn that is merely orthogonal, rather than orthonormal,
the formulas we have derived need to be modified slightly. For example, Eq. (5)
above becomes

v =
〈v1, v〉
〈v1, v1〉

v1 +
〈v2, v〉
〈v2, v2〉

v2 + · · ·+ 〈vn, v〉
〈vn, vn〉

vn.

See Proposition 5.10 of [VST].
Refer now to the the proof of 5.10 (i) given in [VST], and observe that the

inequality 〈v, v〉 ≥ 〈P (v), P (v)〉 will be strict if x 6= 0, since 〈x, x〉 > 0 in this case.
Furthermore, x = 0 if and only if P (v) = v (since x = v − P (v)), and since P (v)
is by definition the point of U closest to v it is clear that P (v) = v if and only if
v ∈ U . Thus we obtain the following strengthened version of Proposition 5.10 (i).
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Proposition. If (u1, u2, . . . , un) is an orthogonal basis for a subspace U of an
inner product space V , then for all v ∈ V we have

‖v‖2 ≥
n∑

i=1

|〈ui, v〉|2

‖ui‖2

with equality if and only if v is in the subspace U .

This permits us also to strengthen Proposition 5.11 (i) of [VST]. Suppose
that v, w ∈ V with w 6= 0 and v not in the 1-dimensional space spanned by w.
Following the proof given in [VST] and using the our strengthened form of 5.10 (i),
we find that |〈v, w〉| < ‖v‖ ‖w‖. It is easily verified that if v is a scalar multiple
of w (or if w is a scalar multiple of v) then in fact |〈v, w〉| = ‖v‖ ‖w‖.
Proposition. If V is an inner product space and v, w ∈ V , then

|〈v, w〉| ≤ ‖v‖ ‖w‖
with equality if and only if v, w are linearly dependent.

Proposition 5.11 (ii) of [VST] was also proved in lectures, although we did not
investigate the conditions under which equality holds. Interested students might
work this out for themselves.

A start was also made on §5c of [VST]. We defined what it means to say that
a linear transformation from one inner product space to another preserves inner
products or preserves lengths. Proposition 5.12 was also proved in lectures, but
I fear that the proof was poorly explained; so students are strongly encouraged
to read the proof in [VST]. (Students are always strongly encouraged to read the
proofs in [VST], but even more so in this case.) The crucial point of the proof is
that it is possible to give a formula for the inner product 〈u, v〉, where u, v ∈ V
are arbitrary, in terms of lengths of vectors. The formula is proved (though not
explicitly stated) in [VST]:

〈u, v〉 =
1
2
(‖u + v‖2 − ‖u‖2 − ‖v‖2) +

i

2
(‖iu + v‖2 − ‖iu‖2 − ‖v‖2)

where here i =
√
−1 ∈ C. If T :V → W is a linear transformation that preserves

lengths then ‖T (u)‖ = ‖u‖ and ‖T (v)‖ = ‖v‖ (by the definition); moreover
‖T (u) + T (v)‖ = ‖T (u + v)‖ = ‖u + v‖,

‖iT (u)‖ = ‖T (iu)‖ = ‖iu‖,
‖iT (u) + T (v)‖ = ‖T (iu + v)‖ = ‖iu + v‖.

Consequently it follows that
1
2
(‖T (u)+T (v)‖2−‖T (u)‖2−‖T (v)‖2)+

i

2
(‖iT (u)+T (v)‖2−‖iT (u)‖2−‖T (v)‖2)

is equal to
1
2
(‖u + v‖2 − ‖u‖2 − ‖v‖2) +

i

2
(‖iu + v‖2 − ‖iu‖2 − ‖v‖2),

showing that 〈T (u), T (v)〉 = 〈u, v〉.

–8–


