
WEEK 8

Summary of week 8 (Lectures 22, 23 and 24)

This week we completed our discussion of Chapter 5 of [VST].
Recall that if V and W are inner product spaces then a linear map T :V → W

is called an isometry if it preserves lengths; that is, T is an isometry if and only if

‖T (x)‖ = ‖x‖ for all x ∈ V .

It was shown at the end of Week 7 that this is equivalent to

〈T (x), T (y)〉 = 〈x, y〉 for all x, y ∈ V .

In other words, T is an isometry if and only if it preserves inner products.
We have seen that for every linear map T : Rn → Rn there is a matrix

A ∈ Mat(n× n, R) such that

T (x) = Ax for all x ∈ Rn.

It turns out that T is an isometry if and only if tAA = I, the identity matrix.
To prove this, suppose first of all that tAA = I. Then for all x, y ∈ Rn,

tx y = tx Iy = tx tAAy,

and so

T (x) · T (y) = (Ax) · (Ay) = t(Ax)(Ay) = tx tAAy = tx y = x · y.

Thus T preserves the dot product and is therefore an isometry on Rn.
Conversely, suppose that T is an isometry. Then T (x) · T (y) = x · y for all

x, y ∈ Rn, and so

tx tAAy = t(Ax)(Ay) = (Ax) · (Ay) = T (x) · T (y) = x · y = tx y = tx Iy

for all x, y ∈ Rn. But, as our next lemma show, this implies that tAA = I, as
required.

Lemma. Let F be any field and M, N ∈ Mat(n × n, F ). If txMy = txNy for
all x, y ∈ Fn, then M = N .

Proof. We adopt the notation that if X is a matrix then Xij denotes the (i, j)-
entry of X. Similarly, if v is a column vector then vj denotes the j-th entry
of v.

Let e1, e2, . . . , en be the standard basis of Fn; that is,

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1

 .
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For each r ∈ {1, 2, . . . , n}, the s-th entry of er is (er)s = δrs, the Kronecker delta.
(Recall that δrs is 1 if r = s and 0 if r 6= s). Now our hypothesis yields that
tei Mej = tei Nej for all i, j ∈ {1, 2, . . . , n}; furthermore,

tei Mej =
n∑

k=1

n∑
l=1

(tei)kMkl(ej)l =
n∑

k=1

n∑
l=1

δikMklδil = Mij ,

since δikMklδil is zero unless k = i and l = j, and similarly tei Nej = Nij . Thus
Mij = Nij for all i and j, and so M = N . �

A matrix A ∈ Mat(n× n, R) is said to be orthogonal if tAA = I. That is, an
orthogonal matrix is a matrix whose transpose and inverse are equal.

Let A ∈ Mat(n× n, R), and let a1, a2, . . . , an be the columns of A. That is,

A =
(
a1

∣∣ a2

∣∣ · · · ∣∣ an

)
.

Then the rows of tA are ta1,
ta2, . . . ,

tan, and

tAA =


ta1
ta2
...

tan

 (
a1

∣∣ a2

∣∣ · · · ∣∣ an

)
=


ta1 a1

ta1 a2 . . . ta1 an
ta2 a1

ta2 a2 . . . ta2 an
...

...
...

tan a1
tan a2 . . . tan an


since the (i, j)-entry of tAA is the product of the i-th row of tA and the j-th
column of A. Since tai aj = ai · aj , this can also be written as

tAA =


a1 · a1 a1 · a2 . . . a1 · an

a2 · a1 a2 · a2 . . . a2 · an
...

...
...

an · a1 an · a2 . . . an · an

 ,

and we conclude that tAA = I if and only if ai · aj = δij for all i and j. That is,
A is orthogonal if and only if the columns of A form an orthonormal basis of Rn.

Summary

For any matrix A ∈ Mat(n× n, R), the following conditions are equivalent:
• the columns of A form an orthonormal basis of Rn;
• the map T : Rn → Rn defined by x 7→ Ax is an isometry;
• tAA = I.

Since tAA = I if and and only if A tA = I (given that A is square), another
equivalent condition is that the columns of tA form an orthonormal basis of Rn

(or, if you prefer, the rows of A form an orthonormal basis of tRn). See Tutorial 7.
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It is easy to generalize the above discussion to the complex case: it is simply
necessary to take complex conjugates in a few places.

Definition. If A is a matrix over the complex field then we define the conjugate of
A to be the matrix A whose (i, j)-entry is the complex conjugate of the (i, j)-entry
of A (for all i and j).

An n × n complex matrix is said to be unitary if tAA = I. Calculations
similar to those above show that A is unitary if and only if x 7→ Ax is an isometry
of Cn, which in turn is equivalent to the columns of A forming an orthonormal
basis of Cn. See 5.15 of [VST].

A real valued function of n variables is said to be analytic at the origin O
if its Taylor series at O converges to the function in some neighbourhood of O.
Taking n = 3 for simplicity, we can then write

F (x, y, z) ≈ a + (bx + cy + dz) + 1
2 (ex2 + fy2 + gz2 + 2hxy + 2jxz + 2kyz) + · · ·

where the constant term a is F (0, 0, 0), the coefficients b, c and d of the terms of
degree 1 are given by the first order partial derivatives of F at the origin, and, in
general, the coefficients of the degree n terms are given by the n-th order partial
derivatives of F at the origin. The closer (x, y, z) is to (0, 0, 0), the better the
approximation. Furthermore, as (x, y, z) approaches (0, 0, 0), the terms of degree
two and higher become insignificant in comparison with the terms of degree one.
So in a small enough neighbourhood of the origin

F (x, y, z)− F (0, 0, 0) ≈ bx + cy + dz = L(x, y, z)

a linear function of (x, y, z). Thus we see that functions that are not linear may,
nevertheless, be approximately linear. This is the basic reason for the importance
of linear algebra.

A stationary point of the function F is a point where all its partial derivatives
vanish. If the origin is a stationary point the linear function L above is identically
zero, and so the terms of degree two assume a greater importance. We obtain

F (x, y, z)− F (0, 0, 0) ≈ 1
2Q(x, y, z)

where Q(x, y, x) is a homogeneous poynomial of degree 2, or quadratic form:

Q(x, y, z) = ex2 + fy2 + gz2 + 2hxy + 2jxz + 2kyz.

To understand the behaviour of functions in neighbourhoods of their stationary
points it is necessary to understand the behaviour of of quadratic forms.

It is possible to apply matrix theory to the study of quadratic forms. The
crucial observation is that

ex2 + fy2 + gz2 + 2hxy + 2jxz + 2kyz = ( x y z )

 e h j
h f k
j k g

  x
y
z

 .
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There is no need to restrict attention to three variables: the situation for any
number of variables is totally analogous. If A is an n × n real symmetric matrix
and x is the column vector whose n components are the variables x1, x2, . . . , xn,
then

Q(x) = txAx

is a quadratic form in x1, x2, . . . , xn. The coefficient of x2
i is Aii and the coefficient

of xixj is 2Aij (for all i and j).
In this context, the single most important fact is the following theorem.

Theorem. If A is a real symmetric matrix then there exists an orthogonal matrix
T such that tTAT is diagonal.

This is Theorem 5.19 (i) of [VST]. (The second part of Theorem 5.19, which
gives the extension of this result to the complex case, was not covered in lec-
tures.) The proof was omitted, but examples were given to show how one can go
about finding an orthogonal matrix T to diagonalize a given symmetric matrix A.
Furthermore, the key step in the proof was done in lectures. It goes as follows.

Let A be an n×n real symmetric matrix. Suppose that λ and µ are eigenvalues
of A, with u and v corresponding eigenvectors. As we know from first year, λ and
µ are roots of the characteristic polynomial of A. We shall show that in fact
they must be real, but for the time being all we can say is that they are complex
numbers that may or may not be real. Note that if an eigenvalue is a non-real
complex number, the corresponding eigenvectors will also have non-real entries.

We have
Au = λu

Av = µv

where λ, µ ∈ C and u, v ∈ Cn, with u 6= 0 and v 6= 0. Now

λ(v · u) = v · (λu) = v · (Au) = tvAu

= tv tAu (since A is real and symmetric)

= (tAv)u = (Av) · u = (µv) · u = µ(v · u),

where we have made use of the fact that the dot product is linear in the second
variable and conjugate linear in the first variable. Since the above holds, in
particular, when µ = λ and v = u, it follows that

λ(v · v) = λ(v · v).

Since v 6= 0, positive definiteness of the dot product yields that v · v 6= 0. Hence
we may cancel v · v from this equation, and deduce that λ = λ. That is, λ is real.
Since λ was an arbitrary eigenvalue of A, we have shown that all eigenvalues of a
real symmetric matrix must be real.
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Now suppose that λ and µ are distinct eigenvalues of the real symmetric
matrix A, and u, v corresponding eigenvectors. In view of the fact that µ must
be real, the equation we proved above becomes

λ(v · u) = µ(v · u),

and since λ 6= µ (by hypothesis) we must have v · u = 0. That is, v is orthogonal
to u.
Summary

• Every eigenvalue of a real symmetric matrix is real.
• For a real symmetric matrix, eigenvectors belonging to distinct eigen-

values are orthogonal.

The remaining essential ingredient needed for the proof of Theorem 5.19 is
the so-called “Fundamental Theorem of Algebra”, which asserts that every non-
constant polynomial with complex coefficients has a zero in C. The proof of this
fact is not part of the syllabus of this course, but (for interest only) a heuristic
outline of a proof was presented in lectures. A separate document dealing with
this has been prepared.

The Fundamental Theorem of Algebra guarantees that the characteristic
polynomial of any matrix A ∈ Mat(n × n, C) will have at least one root, and
hence there exists at least one eigenvalue and a corresponding eigenvector. There
exists an invertible matrix T such that T−1AT is diagonal if and only if it is
possible to find n linearly independent eigenvectors. This can always be done it
A is symmetric, but non-symmetric matrices are not necessarily diagonalizable.
The following example shows illustrates this:

A =

 1 1 1
0 1 2
0 0 1

 .

the characteristic polynomial of A is (1−x)3, and so the only eigenvalue is 1. Any
eigenvector will have to be a solution of 0 1 1

0 0 2
0 0 0

  x
y
z

 =

 0
0
0

 ,

but the general solution of this system involves only one arbitrary parameter:
the solution space is 1-dimensional. So it is not possible to find a 3 × 3 matrix
whose columns are linearly independent eigenvectors of A, and so A cannot be
diagonalized.

For a symmetric matrix A it always turns out that the dimension of the λ-
eigenspace equals the multiplicity of λ as a root of the characteristic equation.
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Finding bases for the eigenspaces corresponding to all the eigenvalues will give
us n vectors altogether, and the matrix T with these vectors as its columns will
necessarily be invertible and will diagonalize A.

If we require T to be orthogonal then we need the columns of T to comprise
an orthonormal basis of Rn. After finding bases for the various eigenspaces we
need to apply the Gram-Schmidt process to obtain orthonormal bases for these
eigenspaces. Given that A is symmetric, it is automatically true that the distinct
eigenspaces are orthogonal to each other, and so combining the orthonormal bases
of the eigenspaces gives an orthonormal basis of Rn.

Note that if A is not symmetric then eigenspaces corresponding to distinct
eigenvalues are not orthogonal to each other. For example, let

A =
(

1 1
0 2

)
.

The eigenvalues are 1 and 2. Both eigenspaces are one-dimensional, and are
spanned, respectively, by the following vectors:(

1
0

)
,

(
1
1

)
.

Observe that they are not orthogonal to each other.
Two examples were done in lectures to illustrate orthogonal diagonalization

of symmetric matrices. Let

A =

−2 1 1
1 6 3
1 3 −4

 , B =

 3 2 2
2 3 2
2 2 3

 .

We find that det(A−xI) = −(x+2)(x+5)(x−7) and det(B−xI) = (1−x)2(7−x).
The three eigenspaces of A all have dimension 1, and they are spanned by

the following three vectors (which have been normalized so as to have length 1):

1√
27

 5
−1
1

 ,
1√
18

 1
1
−4

 ,
1√
54

 1
7
2

 .

The 1-eigenspace of B has dimension 2, and consists of all vectors whose entries
add to zero. We find that

1√
3

 1
1
1

 ,
1√
2

−1
1
0

 ,
1√
6

 1
−2
1


is an orthonormal basis of R3 consisting of a 7-eigenvector and two 1-eigenvectors
of B. The two matrices with these orthonormal bases for their columns are or-
thogonal and diagonalize A and B respectively.
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Let U ∈ Mat(n × n, C) be a unitary matrix. Then the map Cn → Cn given
by multiplication by U is an isometry; so

‖Uv‖ = ‖v‖ for all v ∈ Cn.

If v is an eigenvector of U corresponding to the eigenvalue λ, then v 6= 0 and
Uv = λv. The above equation becomes

‖λv‖ = ‖v‖,

and since we know in general that ‖λv‖ = |λ| ‖v‖, and ‖v‖ 6= 0 since v 6= 0,
it follows that |λ| = 1. We have shown that every (complex) eigenvalue λ of a
unitary matrix lies on the unit circle (the set of numbers in the complex plane of
modulus 1).

An orthogonal matrix is exactly the same thing as a unitary matrix that
happens to have real entries; so it is also true that all complex eigenvalues of a
real orthogonal matrix must lie on the unit circle. In particular, the only possible
real eigenvalues are ±1.

Now let P be a 3× 3 orthogonal matrix. The characteristic polynomial of P
is

det(P − xI) = (λ1 − x)(λ2 − x)(λ3 − x)

where λ1, λ2, λ3 are the eigenvalues of P . Note that putting x = 0 gives
detP = λ1λ2λ3. Since a real cubic polynomial must have at least one real root, P
has at least one real eigenvalue. So in view of the argument above we may assume
that λ1 = ±1. If λ2 and λ3 are not real then we must have λ2 = α and λ3 = α,
where α lies on the unit circle. Otherwise we must have λ2 = ±1 and λ3 = ±1
also. In the former case we find that

det P = λ1λ2λ3 = λ1|α|2 = λ1,

while in the latter case det P = 1 if the multiplicity of 1 as an eigenvalue is 1 or 3,
and detP = −1 if the multiplicity of 1 as an eigenvalue is 0 or 2. In either case
we see that det P = ±1, and if det P = 1 then 1 is an eigenvalue of P .

Our aim is to give a geometrical description of the transformation R3 → R3

given by multiplication by P . We may as well assume that det P = 1, since
det(−P ) = det(−I) detP = (−1)3 det P = −detP , so that replacing P by −P
changes the sign of the determinant. From our discussion above, we know that
1 is an eigenvalue; so we may choose a vector u such that Pu = u. The set L

consisting of all scalar multiples of u is a line through the origin in R3. We define

P = { v ∈ R3 | v · u = 0 },

the plane through the origin perpendicular L.
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If v ∈ P then since multiplication by P preserves the dot product, we see that

(Pv) · u = (Pv) · (Pu) = v · u

(in view of the fact that Pu = u). So Pv ∈ P also, and we conclude that mul-
tiplication by P gives rise to a transformation of the plane P. Moreover, this
transformation preserves lengths (since x 7→ Px is an isometry of R3). It is, of
course, also a linear transformation. Now the only length preserving linear trans-
formations of a plane are reflections and rotations. In this case the transformation
of P must actually be a rotation rather than a reflection: if it were a reflection
then we could find an eigenvector of P lying in the plane P and belonging to the
eigenvalue −1, and another belonging to the eigenvalue 1. This would mean that
λ1λ2λ3 = −1, contrary to our assumption that det P = 1.

We conclude that the transformation T :x 7→ Px fixes all vectors on the line
L and acts as a rotation on P, the plane through the origin perpendicular to L.
Since any vector in R3 can be expressed as the sum of a vector in P and a vector
in L, we can deduce from this that T is a rotation of R3 about the axis L.

As an application of this idea, consider a surface in R3 with equation of the
form

ex2 + fy2 + gz2 + 2hxy + 2jxz + 2kyz = C.

As we have seen, we can write this as tx
˜
Ax

˜
= C, where A is a symmetric matrix,

and we can choose an orthogonal matrix P that diagonalizes the matrix. Moreover,
if P diagonalizes A then so does −P ; so we can assume that detP = 1. Now the
change of variables  x

y
z

 = P

 X
Y
Z


corresponds to a rotation of the coordinate axes; moreover,

(x y z ) A

 x
y
z

 = (X Y Z ) tPAP

 X
Y
Z

 = λ1X
2 + λ2Y

2 + λ3Z
2,

where λ1, λ2, λ3 are the eigenvalues of A. It is now relatively easy to determine
what the surface is like. See Tutorial 8 for more details.
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