
WEEK 9

Summary of week 9 (Lectures 25, 26 and 27)

Lecture 25 and the first part of Lecture 26 were concerned with permutations.
See Definitions 8.1, 8.2 and 8.3 of [VST]. The notation we use is that introduced
on p. 171 of [VST]. See page 173 for examples of multiplication of permutations.

The identity permutation on the set {1, 2, . . . , n} is the identity function
i: {1, 2, . . . , n} → {1, 2, . . . , n} (defined by i(j) = j for all j ∈ {1, 2, . . . , n}).
By the properties of left and right inverses discussed in Tutorial 1 we know that
every permutation has a two-sided inverse. That is, for each σ ∈ Sn there is a
σ−1 ∈ Sn such that σσ−1 = σ−1σ = i. To write down the inverse of a given
permutation, simply swap the rows. For example, if

τ =
[

1 2 3 4
4 1 3 2

]
then the inverse of τ is

τ−1 =
[

4 1 3 2
1 2 3 4

]
,

which would usually be written as

τ−1 =
[

1 2 3 4
2 4 3 1

]
.

Our discussion of the parity of a permutation follows that used in MATH1902.
A given permutation σ ∈ Sn can be represented by a diagram constructed accord-
ing to the following rules. Draw two horizontal rows of n dots, one underneath
the other, both labelled 1, 2, . . . , n from left to right. For each i draw a line
joining the dot in the upper row that is labelled i to the dot in the lower row
that is labelled σ(i). The lines do not have to be straight, but they must remain
within the horizontal strip whose edges are the horizontal lines containing the two
rows of dots. Moreover, no line is permitted to cross itself, and two lines are not
permitted to touch at a point without crossing there. Thus
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5

are all illegitimate.
Let D be a diagram for the permutation σ, drawn so as to satisfy the above

rules. As a temporary notation, let Ci denote the line from dot i in the upper row
to dot σ(i) in the lower row. Note that Ci divides the horizontal strip between
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the rows of dots into two pieces. Dot j in the upper row is in the left hand piece
if j < i and in the right hand piece if j > i; similarly, lower row dots with label
less than σ(i) are in the left hand piece, while those with label greater than σ(i)
are in the right hand piece. So if j is such that i < j and σ(i) > σ(j) then Cj

starts in the right hand piece and finishes in the left hand piece; consequently, it
crosses Ci (the dividing line separating the pieces) an odd number of times. On
the other hand, if i < j and σ(i) < σ(j) then the number of times Cj crosses Ci

must be even (possibly zero). Define cross(i, j) to be the number of times that Ci

and Cj cross, and put

Crossings(D) =
∑

{(i,j) | i<j}

cross(i, j), (1)

the total number of crossings in the diagram.
We are interested in whether Crossings(D) is even or odd. Even terms in the

sum in Eq. (1) do not affect this, and so may be ignored. Furthermore, the sum
of an even number of odd numbers is even, while the sum of an odd number of
odd numbers is odd. So we conclude that Crossings(D) is odd if and only if there
are an odd number of pairs (i, j) with i < j and σ(i) > σ(j). Thus Definition 8.2
says that σ is odd if and only if Crossings(D) is odd, where D is any diagram
associated with σ.

If D is a diagram associated with the permutation σ and D′ a diagram associ-
ated with a permutation τ then a diagram D′′ for the product στ can be obtained
by identifying the upper row of σ with the lower row of τ and then removing the
middle row of dots. We illustrate this for the permutations

σ =
[

1 2 3 4
1 3 4 2

]
τ =

[
1 2 3 4
3 2 1 4

]
,

noting that this gives

στ =
[

1 2 3 4
4 3 1 2

]
as is easily checked.

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
Since Crossings(D′′) = Crossings(D′)+Crossings(D), we conclude that στ is even
if σ and τ are both even or both odd, while it is odd if σ is even and τ odd or if
σ is odd and τ even.
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The above reasoning has proved Corollary 8.9 of [VST]: if σ, τ ∈ Sn then
ε(στ) = ε(σ)ε(τ). The material on pp. 175–177 of [VST], which gives an alternative
proof of this (and a few other things) was not done in lectures.

It is clear that ε(i) = 1, since there are no pairs (i, j) with i < j and
i(i) > i(j) (since i(i) = i and i(j) = j). Combined with Corollary 8.9 this shows
that ε(σ−1) = ε(σ) for all σ ∈ Sn.

If i, j ∈ {1, 2, . . . , n} with i 6= j then τij ∈ Sn is the permutation defined by

τij(k) =

{
j if k = i,
i if k = j,
k if k 6= i and k 6= j,

for all k ∈ {1, 2, . . . , n}. Permutations of this form are called transpositions. Now
if l, m ∈ {1, 2, . . . , n} with l 6= m then there are precisely 2|l −m| − 1 pairs (i, j)
with i < j and τlm(i) > τlm(j). Indeed, assuming that l < m—which involves no
loss of generality, since τlm = τml—the pairs (i, j) with this property are those
with i = l and j ∈ {l + 1, l + 2, . . . ,m − 1}, or with i ∈ {l + 1, l + 2, . . . ,m − 1}
and j = m, or with i = l and j = m. It follows that transpositions are odd
permutations.

The Pi notation for products is analogous to the Sigma notation for sums:

n∏
i=1

ai
def= a1a2 · · · an.

In this notation, n! def=
∏n

i=1 i. Note that n! is the total number of permutations
of {1, 2, . . . , n} (since if σ ∈ Sn then there are n possible values for σ(1), for each
of these there are n− 1 possibilities for σ(2), then n− 2 possibilities for σ(3), and
so on).

The remainder of Lectures 26 and 27 dealt with determinants, following
closely the discussion on pp. 179–187 of [VST]. The only difference between the
treatment in the book and the treatment given in lectures is that the book men-
tions the row space, RS(A), of a matrix A, and the rank of A, two concepts that
have not yet been discussed in lectures (although they will be discussed soon).
The row space of A ∈ Mat(n×m,F ) is the subspace of tFm spanned by the rows
of A, and the rank of A is the dimension of its row space. It is fairly easy to prove
(and we shall do so in lectures) that elementary row operations do not change
the row space, and hence that the rank of an n× n matrix is n if and only if the
matrix is expressible as a product of elementary matrices.
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