
Week 11 Summary

Lecture 20

Let p be an odd prime, and define (as in Lecture 19)

Sp = { t ∈ Z
∗
p | t has a square root in Zp },

Np = { t ∈ Z
∗
p | t does not have a square root in Zp }.

*Proposition: Sp and Np both have exactly (p− 1)/2 elements.

Indeed, since x2 ≡ y2 (mod p) if and only if x ≡ ±y (mod p), it follows that 12,
22, . . . , ((p − 1)/2)2 are all distinct modulo p; furthermore, since each nonzero
element of Zp can be written in the form ±j with j ∈ {1, 2, . . . , (p − 1)/2} it is
clear that these are all the nonzero squares in Zp. So Sp has exactly (p − 1)/2
elements, and as there are (p − 1)/2 remaining nonzero elements of Zp it follows
that Np also has (p− 1)/2 elements.
We have shown that primitive roots exist for all primes; so let t be a primitive root
modulo p. Then t, t2, . . . , tp−1 are all the elements of Z

∗
p. Of these, the ones with

even exponent are obviously squares (since t2j = (tj)2); so t2, t4, . . . , tp−1 ∈ Sp.
(Note that p − 1 is even.) This gives (p − 1)/2 elements of Sp; so it is all the
elements of Sp. The powers of t with odd exponent, namely t, t3, . . . , tp−2, are
thus the elements of Np. (Note that the rule that tj is in Sp if j is even and Np

if j is odd applies also for j outside the range 1 ≤ j ≤ p − 1, since ti = tj if and
only if i ≡ j (mod p− 1), and i ≡ j (mod p− 1) implies i ≡ j (mod 2) since p− 1
is even.)

*Proposition: (1) If x, y ∈ Sp then xy ∈ Sp.
(2) If x, y ∈ Np then xy ∈ Sp.
(3) If x ∈ Sp and y ∈ Np then xy ∈ Np.

This is clear, since titj = ti+j , and i+ j is even if i, j are both even or both odd,
and odd if i is even and j is odd.

For each integer a and odd prime p we define the Legendre symbol (a
p ) as follows:

(
a

p

)
=

{ 1 if a is a nonzero square modulo p,
−1 if a is a nonzero non-square modulo p,

0 if a is zero modulo p.

Observe the following properties.
(i) (a

p ) = ( b
p ) if a ≡ b (mod p).

(ii) (a
p )( b

p ) = (ab
p ) for all a, b ∈ Z.

The first of these is immediate from the definition, and the second is little more
than a restatement of the previous proposition.
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*Proposition:
(
a

p

)
≡ a(p−1)/2 (mod p).

This is clear if p|a, both sides being zero modulo p. For the case p - a, recall that
if t is a primitive root modulo p then t(p−1)/2 ≡ −1 (mod p); so if a is an odd
power of t then a(p−1)/2 is an odd power of −1 (mod p), and if a is an even power
of t then a(p−1)/2 is an even power of −1.
In the case a = −1 the proposition tells us that −1 is a square modulo p if
(p− 1)/2 is even and a non-square modulo p if p is odd. That is, −1 is a square
if p ≡ 1 (mod 4) and a non-square if p ≡ 3 (mod 4). We had already proved this
in Lecture 14.
We shall derive two more rules which, when combined with the ones we have
already, will make it easy to calculate (a

p ) in all cases. The first of these is as
follows: (

2
p

)
= 1 if and only if p ≡ ±1 (mod 8).

Thus ( 2
17 ) = 1 and ( 2

31 ) = 1, but ( 2
13 ) = −1 and ( 2

19 ) = −1. The other key fact is
the famous Law of Quadratic Reciprocity : if p and q are odd primes, then(

p

q

)
= +

(
q

p

)
if p ≡ 1 (mod 4) or if q ≡ 1 (mod 4) (or both),(

p

q

)
= −

(
q

p

)
if p ≡ q ≡ 3 (mod 4).

As an example, we show how to use our rules to determine whether or not 38 is a
square modulo 197. The first step in the calculation of (n

p ) is always to factorize
n and apply (ab

p ) = (a
p )( b

p ) to reduce the problem to calculation of ( q
p ) for prime

values of q. Then either apply the formula for ( 2
p ) or use quadratic reciprocity to

reduce the problem to an equivalent problem with smaller numbers. Thus(
38
197

)
=

(
2

197

) (
19
197

)
= −

(
19
197

)
since 197 ≡ 3 (mod 8) gives ( 2

197 ) = −1. Since 197 ≡ 1 (mod 4), quadratic
reciprocity gives ( 19

197 ) = ( 197
19 ) = ( 7

19 ) (since 197 ≡ 7 (mod 19)). Continuing in
this way we find that(

38
197

)
= −

(
7
19

)
=

(
19
7

)
=

(
5
7

)
=

(
7
5

)
=

(
2
5

)
= −1

(where we used first 19 ≡ 7 ≡ 3 (mod 4), then 19 ≡ 5 (mod 7), then 5 ≡ 1
(mod 4), then 7 ≡ 2 (mod 5), and finally 5 ≡ −3 (mod 8).) Thus 38 is not a
square modulo 197.
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Lecture 21

Let p be an odd prime, and write p1 = (p− 1)/2. For each integer a there exists
an integer b in the range −p1 ≤ b ≤ p1 such that b ≡ a (mod p). We call b the
minimal residue of a.
Fix a ∈ Z such that p - a, and consider the numbers a, 2a, . . . , p1a. For each
i from 1 to p1, let bi be the minimal residue of ia. Then |bi| ∈ {1, 2, . . . , p1} for
each i.

*Proposition: The numbers |b1|, |b2|, . . . , |bp1 | are the numbers 1, 2, . . . , p1 in
some order.

To prove this it suffices to show that |bi| 6= |bj | for i 6= j. But if |bi| = |bj | then
ia ≡ bi = ±bj ≡ ±ja (mod p), giving i ≡ ±j (mod p). Since i, j ∈ {1, 2, . . . , p1}
this implies that i = j.
We are now able to derive a key result, discovered by Gauss.

*Gauss’s Lemma: With the notation as above, let w be the number of bi that
are negative. Then (a

p ) = (−1)w.

Indeed,
∏p1

i=1 bi = (−1)w
∏p1

i=1 |bi|, which by the preceding proposition equals
(−1)wp1!. Modulo p we have

∏p1
i=1 bi ≡

∏p1
i=1 ia = ap1p1!, and so cancelling p1!

gives (−1)w ≡ ap1 (mod p). But ap1 ≡ (a
p ), as was shown in Lecture 20.

Gauss’s Lemma makes it easy to evaluate ( 2
p ): we simply need to determine

how many of the numbers 2, 4, . . . , 2p1 have negative minimal residues. Now
if 1 ≤ i < p/4 then 2 ≤ 2i < p/2, and so 2i is its own minimal residue. On
the other hand, for p/4 < i ≤ p1 we have p/2 < 2i ≤ p − 1, and for each
of these values of 2i the minimal residue is 2i − p, and is negative. So the
number of negative minimal residues is the number of integers i in the range
p/4 < i ≤ p1, which is p1 − [p/4]. If p has the form 8k + 1 then p1 = 4k and
[p/4] = [2k + (1/4)] = 2k, and so p1 = [p/4] = 2k, which is even. Similarly, if
p = 8k− 1 then p1− [p/4] = (4k− 1)− (2k− 1), which is even, while if p = 8k± 3
then similar calculations show that p1 − [p/4] is odd.
In fact, for any specified value of a we can use this same method to find out
which primes p give (a

p ) = 1 and which give (a
p ) = −1. For example, consider

the case a = −3. If 1 ≤ i < p/6 then −3 ≥ −3i > −p/2, the minimal residue of
−3i is −3i itself, and is negative. This give [p/6] negative minimal residues. For
p/6 < i < p/3 we have −p/2 > −3i > −p, and the minimal residue of −3i is p−3i,
which is positive. Finally, for p/3 < i < p/2 we have −p > −3i > −3p/2, again
the minimal residue is p− 3i, which is negative for these values of i. This gives a
further [p/2]− [p/3] negative minimal residues. If p = 6k + 1 then the number of
negative minimal residues is [p/6]+ [p/2]− [p/3] = k+3k−2k, which is even, and
so (a

p ) = 1. If p = 6k− 1 then [p/6] + [p/2]− [p/3] = (k− 1) + (3k− 1)− (2k− 1)
is odd, and so (a

p ) = −1.
We conclude that−3 is a square modulo any prime that is congruent to 1 modulo 6,
and a non-square modulo any prime congruent to −1 modulo 6.
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