Week 11 Summary

Lecture 20

Let p be an odd prime, and define (as in Lecture 19)

$$
\begin{aligned}
\mathcal{S}_{p} & =\left\{t \in \mathbb{Z}_{p}^{*} \mid t \text { has a square root in } \mathbb{Z}_{p}\right\} \\
\mathcal{N}_{p} & =\left\{t \in \mathbb{Z}_{p}^{*} \mid t \text { does not have a square root in } \mathbb{Z}_{p}\right\}
\end{aligned}
$$

*Proposition: \mathcal{S}_{p} and \mathcal{N}_{p} both have exactly $(p-1) / 2$ elements.
Indeed, since $x^{2} \equiv y^{2}(\bmod p)$ if and only if $x \equiv \pm y(\bmod p)$, it follows that 1^{2}, $2^{2}, \ldots,((p-1) / 2)^{2}$ are all distinct modulo p; furthermore, since each nonzero element of \mathbb{Z}_{p} can be written in the form $\pm j$ with $j \in\{1,2, \ldots,(p-1) / 2\}$ it is clear that these are all the nonzero squares in \mathbb{Z}_{p}. So \mathcal{S}_{p} has exactly $(p-1) / 2$ elements, and as there are $(p-1) / 2$ remaining nonzero elements of \mathbb{Z}_{p} it follows that \mathcal{N}_{p} also has $(p-1) / 2$ elements.
We have shown that primitive roots exist for all primes; so let t be a primitive root modulo p. Then $t, t^{2}, \ldots, t^{p-1}$ are all the elements of \mathbb{Z}_{p}^{*}. Of these, the ones with even exponent are obviously squares (since $\left.t^{2 j}=\left(t^{j}\right)^{2}\right)$; so $t^{2}, t^{4}, \ldots, t^{p-1} \in \mathcal{S}_{p}$. (Note that $p-1$ is even.) This gives $(p-1) / 2$ elements of \mathcal{S}_{p}; so it is all the elements of \mathcal{S}_{p}. The powers of t with odd exponent, namely $t, t^{3}, \ldots, t^{p-2}$, are thus the elements of \mathcal{N}_{p}. (Note that the rule that t^{j} is in \mathcal{S}_{p} if j is even and \mathcal{N}_{p} if j is odd applies also for j outside the range $1 \leq j \leq p-1$, since $t^{i}=t^{j}$ if and only if $i \equiv j(\bmod p-1)$, and $i \equiv j(\bmod p-1)$ implies $i \equiv j(\bmod 2)$ since $p-1$ is even.)
*Proposition: (1) If $x, y \in \mathcal{S}_{p}$ then $x y \in \mathcal{S}_{p}$.
(2) If $x, y \in \mathcal{N}_{p}$ then $x y \in \mathcal{S}_{p}$.
(3) If $x \in \mathcal{S}_{p}$ and $y \in \mathcal{N}_{p}$ then $x y \in \mathcal{N}_{p}$.

This is clear, since $t^{i} t^{j}=t^{i+j}$, and $i+j$ is even if i, j are both even or both odd, and odd if i is even and j is odd.
For each integer a and odd prime p we define the Legendre symbol ($\frac{a}{p}$) as follows:

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
1 & \text { if } a \text { is a nonzero square modulo } p \\
-1 & \text { if } a \text { is a nonzero non-square modulo } p \\
0 & \text { if } a \text { is zero modulo } p
\end{aligned}\right.
$$

Observe the following properties.
(i) $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$ if $a \equiv b(\bmod p)$.
(ii) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$ for all $a, b \in \mathbb{Z}$.

The first of these is immediate from the definition, and the second is little more than a restatement of the previous proposition.
*Proposition: $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$.
This is clear if $p \mid a$, both sides being zero modulo p. For the case $p \nmid a$, recall that if t is a primitive root modulo p then $t^{(p-1) / 2} \equiv-1(\bmod p)$; so if a is an odd power of t then $a^{(p-1) / 2}$ is an odd power of $-1(\bmod p)$, and if a is an even power of t then $a^{(p-1) / 2}$ is an even power of -1 .
In the case $a=-1$ the proposition tells us that -1 is a square modulo p if $(p-1) / 2$ is even and a non-square modulo p if p is odd. That is, -1 is a square if $p \equiv 1(\bmod 4)$ and a non-square if $p \equiv 3(\bmod 4)$. We had already proved this in Lecture 14.
We shall derive two more rules which, when combined with the ones we have already, will make it easy to calculate ($\frac{a}{p}$) in all cases. The first of these is as follows:

$$
\left(\frac{2}{p}\right)=1 \text { if and only if } p \equiv \pm 1(\bmod 8)
$$

Thus $\left(\frac{2}{17}\right)=1$ and $\left(\frac{2}{31}\right)=1$, but $\left(\frac{2}{13}\right)=-1$ and $\left(\frac{2}{19}\right)=-1$. The other key fact is the famous Law of Quadratic Reciprocity: if p and q are odd primes, then

$$
\begin{array}{ll}
\left(\frac{p}{q}\right)=+\left(\frac{q}{p}\right) & \text { if } p \equiv 1(\bmod 4) \text { or if } q \equiv 1(\bmod 4)(\text { or both }) \\
\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right) & \text { if } p \equiv q \equiv 3(\bmod 4)
\end{array}
$$

As an example, we show how to use our rules to determine whether or not 38 is a square modulo 197. The first step in the calculation of $\left(\frac{n}{p}\right)$ is always to factorize n and apply $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ to reduce the problem to calculation of $\left(\frac{q}{p}\right)$ for prime values of q. Then either apply the formula for $\left(\frac{2}{p}\right)$ or use quadratic reciprocity to reduce the problem to an equivalent problem with smaller numbers. Thus

$$
\left(\frac{38}{197}\right)=\left(\frac{2}{197}\right)\left(\frac{19}{197}\right)=-\left(\frac{19}{197}\right)
$$

since $197 \equiv 3(\bmod 8)$ gives $\left(\frac{2}{197}\right)=-1$. Since $197 \equiv 1(\bmod 4)$, quadratic reciprocity gives $\left(\frac{19}{197}\right)=\left(\frac{197}{19}\right)=\left(\frac{7}{19}\right)($ since $197 \equiv 7(\bmod 19))$. Continuing in this way we find that

$$
\left(\frac{38}{197}\right)=-\left(\frac{7}{19}\right)=\left(\frac{19}{7}\right)=\left(\frac{5}{7}\right)=\left(\frac{7}{5}\right)=\left(\frac{2}{5}\right)=-1
$$

(where we used first $19 \equiv 7 \equiv 3(\bmod 4)$, then $19 \equiv 5(\bmod 7)$, then $5 \equiv 1$ $(\bmod 4)$, then $7 \equiv 2(\bmod 5)$, and finally $5 \equiv-3(\bmod 8)$.$) Thus 38$ is not a square modulo 197.

Lecture 21

Let p be an odd prime, and write $p_{1}=(p-1) / 2$. For each integer a there exists an integer b in the range $-p_{1} \leq b \leq p_{1}$ such that $b \equiv a(\bmod p)$. We call b the minimal residue of a.
Fix $a \in \mathbb{Z}$ such that $p \nmid a$, and consider the numbers $a, 2 a, \ldots, p_{1} a$. For each i from 1 to p_{1}, let b_{i} be the minimal residue of $i a$. Then $\left|b_{i}\right| \in\left\{1,2, \ldots, p_{1}\right\}$ for each i.
*Proposition: The numbers $\left|b_{1}\right|,\left|b_{2}\right|, \ldots,\left|b_{p_{1}}\right|$ are the numbers $1,2, \ldots, p_{1}$ in some order.
To prove this it suffices to show that $\left|b_{i}\right| \neq\left|b_{j}\right|$ for $i \neq j$. But if $\left|b_{i}\right|=\left|b_{j}\right|$ then $i a \equiv b_{i}= \pm b_{j} \equiv \pm j a(\bmod p)$, giving $i \equiv \pm j(\bmod p)$. Since $i, j \in\left\{1,2, \ldots, p_{1}\right\}$ this implies that $i=j$.
We are now able to derive a key result, discovered by Gauss.
*Gauss's Lemma: With the notation as above, let w be the number of b_{i} that are negative. Then $\left(\frac{a}{p}\right)=(-1)^{w}$.
Indeed, $\prod_{i=1}^{p_{1}} b_{i}=(-1)^{w} \prod_{i=1}^{p_{1}}\left|b_{i}\right|$, which by the preceding proposition equals $(-1)^{w} p_{1}$!. Modulo p we have $\prod_{i=1}^{p_{1}} b_{i} \equiv \prod_{i=1}^{p_{1}} i a=a^{p_{1}} p_{1}$!, and so cancelling p_{1} ! gives $(-1)^{w} \equiv a^{p_{1}}(\bmod p)$. But $a^{p_{1}} \equiv\left(\frac{a}{p}\right)$, as was shown in Lecture 20.
Gauss's Lemma makes it easy to evaluate $\left(\frac{2}{p}\right)$: we simply need to determine how many of the numbers $2,4, \ldots, 2 p_{1}$ have negative minimal residues. Now if $1 \leq i<p / 4$ then $2 \leq 2 i<p / 2$, and so $2 i$ is its own minimal residue. On the other hand, for $p / 4<i \leq p_{1}$ we have $p / 2<2 i \leq p-1$, and for each of these values of $2 i$ the minimal residue is $2 i-p$, and is negative. So the number of negative minimal residues is the number of integers i in the range $p / 4<i \leq p_{1}$, which is $p_{1}-[p / 4]$. If p has the form $8 k+1$ then $p_{1}=4 k$ and $[p / 4]=[2 k+(1 / 4)]=2 k$, and so $p_{1}=[p / 4]=2 k$, which is even. Similarly, if $p=8 k-1$ then $p_{1}-[p / 4]=(4 k-1)-(2 k-1)$, which is even, while if $p=8 k \pm 3$ then similar calculations show that $p_{1}-[p / 4]$ is odd.
In fact, for any specified value of a we can use this same method to find out which primes p give $\left(\frac{a}{p}\right)=1$ and which give $\left(\frac{a}{p}\right)=-1$. For example, consider the case $a=-3$. If $1 \leq i<p / 6$ then $-3 \geq-3 i>-p / 2$, the minimal residue of $-3 i$ is $-3 i$ itself, and is negative. This give $[p / 6]$ negative minimal residues. For $p / 6<i<p / 3$ we have $-p / 2>-3 i>-p$, and the minimal residue of $-3 i$ is $p-3 i$, which is positive. Finally, for $p / 3<i<p / 2$ we have $-p>-3 i>-3 p / 2$, again the minimal residue is $p-3 i$, which is negative for these values of i. This gives a further $[p / 2]-[p / 3]$ negative minimal residues. If $p=6 k+1$ then the number of negative minimal residues is $[p / 6]+[p / 2]-[p / 3]=k+3 k-2 k$, which is even, and so $\left(\frac{a}{p}\right)=1$. If $p=6 k-1$ then $[p / 6]+[p / 2]-[p / 3]=(k-1)+(3 k-1)-(2 k-1)$ is odd, and so $\left(\frac{a}{p}\right)=-1$.
We conclude that -3 is a square modulo any prime that is congruent to 1 modulo 6 , and a non-square modulo any prime congruent to -1 modulo 6 .

