Week 11 Summary

Lecture 20

Let p be an odd prime, and define (as in Lecture 19)

$$S_p = \{ t \in \mathbb{Z}_p^* \mid t \text{ has a square root in } \mathbb{Z}_p \},$$
$$\mathcal{N}_p = \{ t \in \mathbb{Z}_p^* \mid t \text{ does not have a square root in } \mathbb{Z}_p \}.$$

***Proposition:** S_p and N_p both have exactly (p-1)/2 elements.

Indeed, since $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv \pm y \pmod{p}$, it follows that 1^2 , 2^2 , ..., $((p-1)/2)^2$ are all distinct modulo p; furthermore, since each nonzero element of \mathbb{Z}_p can be written in the form $\pm j$ with $j \in \{1, 2, \ldots, (p-1)/2\}$ it is clear that these are all the nonzero squares in \mathbb{Z}_p . So \mathcal{S}_p has exactly (p-1)/2 elements, and as there are (p-1)/2 remaining nonzero elements of \mathbb{Z}_p it follows that \mathcal{N}_p also has (p-1)/2 elements.

We have shown that primitive roots exist for all primes; so let t be a primitive root modulo p. Then t, t^2, \ldots, t^{p-1} are all the elements of \mathbb{Z}_p^* . Of these, the ones with even exponent are obviously squares (since $t^{2j} = (t^j)^2$); so $t^2, t^4, \ldots, t^{p-1} \in S_p$. (Note that p-1 is even.) This gives (p-1)/2 elements of S_p ; so it is all the elements of S_p . The powers of t with odd exponent, namely t, t^3, \ldots, t^{p-2} , are thus the elements of \mathcal{N}_p . (Note that the rule that t^j is in \mathcal{S}_p if j is even and \mathcal{N}_p if j is odd applies also for j outside the range $1 \leq j \leq p-1$, since $t^i = t^j$ if and only if $i \equiv j \pmod{p-1}$, and $i \equiv j \pmod{p-1}$ implies $i \equiv j \pmod{2}$ since p-1is even.)

***Proposition:** (1) If $x, y \in S_p$ then $xy \in S_p$.

- (2) If $x, y \in \mathcal{N}_p$ then $xy \in \mathcal{S}_p$.
- (3) If $x \in \mathcal{S}_p$ and $y \in \mathcal{N}_p$ then $xy \in \mathcal{N}_p$.

This is clear, since $t^i t^j = t^{i+j}$, and i+j is even if i, j are both even or both odd, and odd if i is even and j is odd.

For each integer a and odd prime p we define the Legendre symbol $\left(\frac{a}{p}\right)$ as follows:

$$\begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} 1 & \text{if } a \text{ is a nonzero square modulo } p, \\ -1 & \text{if } a \text{ is a nonzero non-square modulo } p, \\ 0 & \text{if } a \text{ is zero modulo } p. \end{cases}$$

Observe the following properties.

- (i) $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$ if $a \equiv b \pmod{p}$.
- (ii) $\binom{a}{p}\binom{b}{p} = \binom{ab}{p}$ for all $a, b \in \mathbb{Z}$.

The first of these is immediate from the definition, and the second is little more than a restatement of the previous proposition.

***Proposition:**
$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

This is clear if p|a, both sides being zero modulo p. For the case $p \nmid a$, recall that if t is a primitive root modulo p then $t^{(p-1)/2} \equiv -1 \pmod{p}$; so if a is an odd power of t then $a^{(p-1)/2}$ is an odd power of $-1 \pmod{p}$, and if a is an even power of t then $a^{(p-1)/2}$ is an even power of -1.

In the case a = -1 the proposition tells us that -1 is a square modulo p if (p-1)/2 is even and a non-square modulo p if p is odd. That is, -1 is a square if $p \equiv 1 \pmod{4}$ and a non-square if $p \equiv 3 \pmod{4}$. We had already proved this in Lecture 14.

We shall derive two more rules which, when combined with the ones we have already, will make it easy to calculate $\left(\frac{a}{p}\right)$ in all cases. The first of these is as follows:

$$\left(\frac{2}{p}\right) = 1$$
 if and only if $p \equiv \pm 1 \pmod{8}$.

Thus $\left(\frac{2}{17}\right) = 1$ and $\left(\frac{2}{31}\right) = 1$, but $\left(\frac{2}{13}\right) = -1$ and $\left(\frac{2}{19}\right) = -1$. The other key fact is the famous *Law of Quadratic Reciprocity*: if p and q are odd primes, then

$$\begin{pmatrix} \frac{p}{q} \end{pmatrix} = + \begin{pmatrix} \frac{q}{p} \end{pmatrix} \quad \text{if } p \equiv 1 \pmod{4} \text{ or if } q \equiv 1 \pmod{4} \text{ (or both)}, \\ \begin{pmatrix} \frac{p}{q} \end{pmatrix} = - \begin{pmatrix} \frac{q}{p} \end{pmatrix} \quad \text{if } p \equiv q \equiv 3 \pmod{4}.$$

As an example, we show how to use our rules to determine whether or not 38 is a square modulo 197. The first step in the calculation of $\left(\frac{n}{p}\right)$ is always to factorize n and apply $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ to reduce the problem to calculation of $\left(\frac{q}{p}\right)$ for prime values of q. Then either apply the formula for $\left(\frac{2}{p}\right)$ or use quadratic reciprocity to reduce the problem to an equivalent problem with smaller numbers. Thus

$$\left(\frac{38}{197}\right) = \left(\frac{2}{197}\right)\left(\frac{19}{197}\right) = -\left(\frac{19}{197}\right)$$

since $197 \equiv 3 \pmod{8}$ gives $(\frac{2}{197}) = -1$. Since $197 \equiv 1 \pmod{4}$, quadratic reciprocity gives $(\frac{19}{197}) = (\frac{197}{19}) = (\frac{7}{19})$ (since $197 \equiv 7 \pmod{19}$). Continuing in this way we find that

$$\left(\frac{38}{197}\right) = -\left(\frac{7}{19}\right) = \left(\frac{19}{7}\right) = \left(\frac{5}{7}\right) = \left(\frac{7}{5}\right) = \left(\frac{2}{5}\right) = -1$$

(where we used first $19 \equiv 7 \equiv 3 \pmod{4}$, then $19 \equiv 5 \pmod{7}$, then $5 \equiv 1 \pmod{4}$, then $7 \equiv 2 \pmod{5}$, and finally $5 \equiv -3 \pmod{8}$.) Thus 38 is not a square modulo 197.

Lecture 21

Let p be an odd prime, and write $p_1 = (p-1)/2$. For each integer a there exists an integer b in the range $-p_1 \leq b \leq p_1$ such that $b \equiv a \pmod{p}$. We call b the minimal residue of a.

Fix $a \in \mathbb{Z}$ such that $p \nmid a$, and consider the numbers $a, 2a, \ldots, p_1 a$. For each i from 1 to p_1 , let b_i be the minimal residue of ia. Then $|b_i| \in \{1, 2, \ldots, p_1\}$ for each i.

***Proposition:** The numbers $|b_1|, |b_2|, \ldots, |b_{p_1}|$ are the numbers $1, 2, \ldots, p_1$ in some order.

To prove this it suffices to show that $|b_i| \neq |b_j|$ for $i \neq j$. But if $|b_i| = |b_j|$ then $ia \equiv b_i = \pm b_j \equiv \pm ja \pmod{p}$, giving $i \equiv \pm j \pmod{p}$. Since $i, j \in \{1, 2, \dots, p_1\}$ this implies that i = j.

We are now able to derive a key result, discovered by Gauss.

*Gauss's Lemma: With the notation as above, let w be the number of b_i that are negative. Then $\left(\frac{a}{p}\right) = (-1)^w$.

Indeed, $\prod_{i=1}^{p_1} b_i = (-1)^w \prod_{i=1}^{p_1} |b_i|$, which by the preceding proposition equals $(-1)^w p_1!$. Modulo p we have $\prod_{i=1}^{p_1} b_i \equiv \prod_{i=1}^{p_1} ia = a^{p_1} p_1!$, and so cancelling $p_1!$ gives $(-1)^w \equiv a^{p_1} \pmod{p}$. But $a^{p_1} \equiv (\frac{a}{p})$, as was shown in Lecture 20.

Gauss's Lemma makes it easy to evaluate $(\frac{2}{p})$: we simply need to determine how many of the numbers 2, 4, ..., $2p_1$ have negative minimal residues. Now if $1 \le i < p/4$ then $2 \le 2i < p/2$, and so 2i is its own minimal residue. On the other hand, for $p/4 < i \le p_1$ we have $p/2 < 2i \le p - 1$, and for each of these values of 2i the minimal residue is 2i - p, and is negative. So the number of negative minimal residues is the number of integers i in the range $p/4 < i \le p_1$, which is $p_1 - [p/4]$. If p has the form 8k + 1 then $p_1 = 4k$ and [p/4] = [2k + (1/4)] = 2k, and so $p_1 = [p/4] = 2k$, which is even. Similarly, if p = 8k - 1 then $p_1 - [p/4] = (4k - 1) - (2k - 1)$, which is even, while if $p = 8k \pm 3$ then similar calculations show that $p_1 - [p/4]$ is odd.

In fact, for any specified value of a we can use this same method to find out which primes p give $\left(\frac{a}{p}\right) = 1$ and which give $\left(\frac{a}{p}\right) = -1$. For example, consider the case a = -3. If $1 \le i < p/6$ then $-3 \ge -3i > -p/2$, the minimal residue of -3i is -3i itself, and is negative. This give [p/6] negative minimal residues. For p/6 < i < p/3 we have -p/2 > -3i > -p, and the minimal residue of -3i is p-3i, which is positive. Finally, for p/3 < i < p/2 we have -p > -3i > -3p/2, again the minimal residue is p - 3i, which is negative for these values of i. This gives a further [p/2] - [p/3] negative minimal residues. If p = 6k + 1 then the number of negative minimal residues is [p/6] + [p/2] - [p/3] = k + 3k - 2k, which is even, and so $\left(\frac{a}{p}\right) = 1$. If p = 6k - 1 then [p/6] + [p/2] - [p/3] = (k - 1) + (3k - 1) - (2k - 1)is odd, and so $\left(\frac{a}{p}\right) = -1$.

We conclude that -3 is a square modulo any prime that is congruent to 1 modulo 6, and a non-square modulo any prime congruent to -1 modulo 6.