
Week 12 Summary

Lecture 22

In this lecture we shall prove the Law of Quadratic Reciprocity. We follow the
treatment given in Hardy and Wright.
Let p and q be distinct odd primes, and let p1 = 1

2 (p − 1) and q1 = 1
2 (q − 1).

Define

S(q, p) =
p1∑

i=1

[
iq

p

]
(1)

Note that [iq/p] (the integer part of iq/p) can also be described as the quotient
on division of iq by p; thus, denoting the remainder by Ri, we have 0 < Ri < p
(since p - iq) and

iq = p

[
iq

p

]
+ Ri (for all i from 1 to p1). (2)

Using the terminology introduced in the discussion of Gauss’s Lemma (in Lec-
ture 21), the minimal residue of iq modulo p is the number congruent to iq (mod p)
with smallest possible absolute value. If 0 < Ri < (p/2) then Ri is the minimal
residue, but if (p/2) < Ri < p then the minimal residue is Ri − p (which lies
between −p/2 and 0). In this latter case the minimal residue is negative, and its
absolute value is p−Ri; in the former case the minimal residue is positive and its
absolute value is Ri. We proved last time that the absolute values of the minimal
residues of q, 2q, . . . , p1q are 1, 2, . . . , p1 in some order, and so it follows that∑

Ri<
p
2

Ri +
∑

Ri>
p
2

(p−Ri) = 1 + 2 + · · ·+ p1. (3)

If w denotes the number of terms in the second sum on the left hand side, then
w is also the number of values of i for which the minimal residue is negative,
and so by Gauss’s Lemma, ( q

p ) = (−1)w. Our immediate aim is to prove that
( q

p ) = (−1)S(q,p) (with S(q, p) as defined in Eq. (1) above). Thus we must show
that S(q, p) ≡ w (mod 2).
Writing N = 1 + 2 + · · ·+ p1, Eq. (3) gives( ∑

Ri<
p
2

Ri

)
−

( ∑
Ri>

p
2

Ri

)
+ wp = N. (4)

But −1 ≡ +1 (mod 2), and p ≡ 1 (mod 2); so reading Eq. (4) mod 2 gives( ∑
Ri<

p
2

Ri

)
+

( ∑
Ri>

p
2

Ri

)
+ w ≡ N (mod 2).
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The two sums on the left combine to give all the values of i; so

( p1∑
i=1

Ri

)
+ w ≡ N (mod 2). (5)

On the other hand, summing Eq. (2) from i = 1 to p1 gives

q + 2q + · · ·+ p1q =
( p1∑

i=1

p

[
iq

p

])
+

( p1∑
i=1

Ri

)
,

or, equivalently,

qN = pS(q, p) +
p1∑

i=1

Ri, (6)

since
∑p1

i=1 p[iq/p] = p
∑p1

i=1[iq/p] = pS(q, p) by Eq. (1). Now reading Eq. (6)
mod 2, using the fact that q ≡ p ≡ 1 (mod 2), gives

N ≡ S(q, p) +
p1∑

i=1

Ri (mod 2).

Combining this with (5) above we deduce that

S(q, p) ≡ N −
p1∑

i=1

Ri ≡ w (mod 2),

and hence (−1)S(q,p) = (−1)w = ( q
p ), as required.

We now complete the proof of the Law of Quadratic Reciprocity by proving the
following result.

Proposition: With the notation as above, S(q, p) + S(p, q) = p1q1.

The proof proceeds by counting in two different ways the number of points (i, j) in
the xy-plane such that the coordinates i and j are integers satisfying 0 < i < (p/2)
and 0 < j < (q/2). The first way is trivial: there are obviously p1q1 such points,
since the number of possible values for i is p1 = [p/2] and the number of possible
values for j is q1 = [q/2].
Now we count these points according to whether they lie above or below the
line with equation y = (q/p)x. (Note that none of the points lie on this line,
since j = (q/p)i with i, j ∈ Z would imply that p|i, which is impossible for
0 < i < (p/2).) For a fixed integer i in the range 0 < i < (p/2), the point (i, j)
lies below the line y = (q/p)x if and only if j < (q/p)i. So the number of points
satisfying our requirements (for this fixed i) is the number of integers j in the
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range 0 < j < (iq/p). This equals [iq/p], and as i varies the total number of
points obtained is

∑p1
i=1[iq/p] = S(q, p).

Writing the equation of the line as x = (p/q)y we see that, for a fixed value of j,
the point (i, j) lies above the line if 0 < i < (p/q)j. This give [jp/q] points, and as
j runs from 1 to q1, the total number of points obtained is

∑q1
j=1[jp/q] = S(p, q).

Hence S(q, p) + S(p, q) = p1q1, as required.

Since ( q
p ) = (−1)S(q,p) and (symmetrically) (p

q ) = (−1)S(p,q), it follows from the
Proposition that(

q

p

) (
p

q

)
= (−1)p1q1 =

{−1 if both p1 and q1 are odd,
+1 otherwise.

Since p1 is odd if p ≡ 3 (mod 4) and even if p ≡ 1 (mod 4), and similarly q1 is
odd or even as q ≡ 3 or q ≡ 1 (mod 4), we conclude that ( q

p ) = −(p q ) if p and q

are both congruent to 3 (mod 4), and ( q
p ) = (p q ) if either p or q is congruent to 1

(mod 4). This is the Law of Quadratic Reciprocity.

Lecture 23

As an example of the use of the Law of Quadratic Reciprocity, let us see how to
determine whether or not 407 is a square modulo 113. (The number 113 is prime.)
The first step is to reduce 407 mod 113: we find that 407 = 3× 113 + 68. So(

68
113

)
=

(
22 × 17

113

)
=

(
2

113

)2 (
17
113

)
=

(
17
113

)
since ( 2

113 ) = ±1. Now 17 ≡ 1 (mod 4); so without even worrying about the mod 4
congruence class of 113 we can say that ( 17

113 ) = ( 113
17 ). Now 113 ≡ 11 (mod 17);

so (
407
113

)
=

(
113
17

)
=

(
11
17

)
=

(
17
11

)
by another application of quadratic reciprocity. Now 17 ≡ 6 (mod 11); so(

407
113

)
=

(
17
11

)
=

(
6
11

)
=

(
2× 3
11

)
=

(
2
11

) (
3
11

)
.

Now ( 2
11 ) = −1 since 11 ≡ 3 (mod 4), and ( 3

11 ) = −( 11
3 ) since 11 and 3 are both

congruent to 3 (mod 4). Thus(
407
113

)
=

(
2
11

) (
3
11

)
=

(
11
3

)
=

(
2
3

)
= −1.

So 407 is a non-square modulo 113.
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A real (or complex) valued function f defined on the positive integers is said to
be “multiplicative” if f(ab) = f(a)f(b) whenever gcd(a, b) = 1. We have already
observed that the Euler phi function ϕ has this property. Another example is the
function f defined by the rule that f(n) is the number of positive divisors of n. For
example, the number 4 has three positive divisors, namely 1, 2 and 4. So f(4) = 3.
Similarly, there are two positive divisors of 3, namely 1 and 3; so f(3) = 2. Since
gcd(4, 3) = 1 it is easy to see that every positive divisor of 12 = 4× 3 is uniquely
expressible in the form xy with x a positive divisor of 4 and y a positive divisor
of 3. So f(12) = f(4)f(3) = 6, as is readily checked.
Similarly, let σ: Z+ → Z

+ be the function defined by the rule that σ(n) is the
sum of the positive divisors of n. If gcd(a, b) = 1 then d = xy establishes a one to
one correspondence between positive integers d such that d|ab and pairs (x, y) of
positive integers x|a and y|b; hence

σ(ab) =
∑
d|ab

d =
∑
x|a

∑
y|b

xy =
(∑

x|a

x
)(∑

y|b

y
)

= σ(a)σ(b).

Thus σ is multiplicative.
A positive integer n is said to be “perfect” if it is the sum of its proper positive
divisors (the positive divisors other than n itself). For example, 28 is perfect,
since 1+2+4+7+14 = 28. In terms of the function σ defined above, n is perfect
if σ(n) = 2n. It is known that an even number n is perfect if and only if there
exists a prime p such that 2p − 1 is also prime, and n = 2p−1(2p − 1). (We shall
prove this below.) It is not known if there are any odd perfect numbers.
Numbers of the form 2p − 1, where p is prime, are called “Mersenne numbers”.
Since 2ab − 1 = (2a − 1)(1 + 2b + 22b + · · ·+ 2(a−1)b) it is clear that 2K − 1 cannot
be prime unless K is prime. For example, since 3|15 and 5|15 it follows that
23−1 | 215−1 and 25−1 | 215−1. However, a little experimentation suggests that
there is a tendency for 2p − 1 to be prime when p is. Thus, 22 − 1 = 3 is prime,
23 − 1 = 7 is prime, 25 − 1 = 31 is prime, and 27 − 1 = 127 is prime. In general,
suppose that p is prime and that r is a prime divisor of 2p − 1. Then 2p ≡ 1
(mod r), and so ordr(2) | p. Since the only divisors of p are p and 1, and since
ordr(2) is certainly not 1, it follows that ordr(2) = p. However, the Euler-Fermat
Theorem tells us that ordr(2) | r − 1. So r − 1 is a multiple of p. Thus we have
shown that all prime factors of 2p − 1 must be congruent to 1 modulo p.
Thus, for example, the prime factors of 211 − 1 = 2047 must be congruent to 1
modulo 11. The first few numbers congruent to 1 modulo 11 are 1, 12, 23, 34, 45,
56, 67, 78, 89, . . . . For each prime r in this list we can easily check whether or not
it is a factor of 2047; we immediately find that 2047 = 23× 89. So it is certainly
not true that all Mersenne numbers are prime; however, testing primality of a
Mersenne number involves significantly less computation than testing primality
of an arbitrary number of a similar size. The largest prime known is in fact a
Mersenne number.
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Here is the proof that all even perfect numbers have the form 2p−1(2p− 1), where
2p − 1 is a Mersenne prime. Suppose that n is an even perfect number, and write
n = 2km, where m is odd. Since n is perfect,

2k+1m = 2n = σ(n) = σ(2km) = σ(2k)σ(m) = (2k+1 − 1)σ(m)

where we have used the multiplicative property of σ and the trivial fact that
σ(2k) = 1 + 2 + 22 + · · · + 2k = 2k+1 − 1 (proved by summing this geometric
series). So σ(m)/m = 2k+1/(2k+1 − 1), and since the fraction on the right hand
side is clearly in its lowest terms, it follows that m = (2k+1−1)r and σ(m) = 2k+1r
for some positive integer r. Now m has at least the divisors r and (2k+1−1)r, the
sum of which is 2k+1r. Since this is already equal to σ(m) it follows that m has
no further divisors. Thus r = 1 (or else 1 would be another divisor) and 2k+1 − 1
is prime (or else it would contribute further divisors of m). (In fact a number
that has only two divisors in total has to be prime.) So m is a Mersenne prime,
as claimed.
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