Week 2 Summary

Lecture 3

Suppose that r_0 and r_1 are nonnegative integers, not both zero. Choose the notation so that $r_0 \ge r_1$. The greatest common divisor $d = \gcd(r_0, r_1)$ can be found as follows.

If $r_1 = 0$ then the gcd is just r_0 . (For example, gcd(6, 0) = 6. Remember that 0 is a multiple of everything!) If $r_1 > 0$ then divide r_0 by r_1 to get a quotient a_1 and remainder r_2 . If $r_2 = 0$ then the gcd is r_1 ; otherwise, divide r_2 into r_1 , obtaining quotient a_2 and remainder r_3 . Continue in this way until a remainder of zero is obtained. So we get the following setup, where the r_i 's and a_i 's are integers:

$$r_{0} = a_{1}r_{1} + r_{2} \qquad (0 < r_{2} < r_{1})$$

$$r_{1} = a_{2}r_{2} + r_{3} \qquad (0 < r_{3} < r_{2})$$

$$r_{2} = a_{3}r_{3} + r_{4} \qquad (0 < r_{4} < r_{3})$$

$$\vdots$$

$$r_{k-2} = a_{k-1}r_{k-1} + r_{k} \qquad (0 < r_{k} < r_{k-1})$$

$$r_{k-1} = a_{k}r_{k}.$$

Using the proposition from the end of Lecture 2 we see that

 $gcd(r_0, r_1) = gcd(r_1, r_2) = gcd(r_2, r_3) = \cdots = gcd(r_{k-1}, r_k) = gcd(r_k, 0) = r_k.$ That is, d (the gcd of r_0 and r_1) equals r_k , the last nonzero remainder obtained in the above process.

It is always possible to find integers p and q such that $pr_1 + qr_0 = \gcd(r_0, r_1)$. One way to do this is by working backwards through the above equations. The second to last equation gives $r_k = (-a_{k-1})r_{k-1} + r_{k-2}$, expressing r_k as a linear combination of r_{k-1} and r_{k-2} . The equation previous to that expresses r_{k-1} in terms of r_{k-2} and r_{k-3} , and if we substitute this expression for r_{k-1} into our expression for r_k we get r_k expressed in terms of r_{k-3} and r_{k-2} . But the next equation back gives a formula for r_{k-2} , and substituting this into the formula for r_k now expresses r_k in terms of r_{k-4} and r_{k-3} . Continuing like this we eventually get r_k expressed in terms of r_0 and r_1 . See the example on pages 26, 27 of Walters' book.

There is way to do this, using something we call a *Magic Table*. Given a sequence of numbers a_1, a_2, a_3, \ldots , we define $p_{-1} = 0$, $p_0 = 1$ and $q_{-1} = 1$, $q_0 = 0$, and successively compute the numbers p_k and q_k in the following table

		a_1	a_2	a_3	a_4	• • •
0	1	p_1	p_2	p_3	p_4	• • •
1	0	q_1	q_2	q_3	q_4	• • •

using the recurrence relations

$$p_k = a_k p_{k-1} + p_{k-2}$$
$$q_k = a_k q_{k-1} + q_{k-2}$$

If one constructs this table using the sequence of quotients a_1, a_2, \ldots, a_k obtained in the Euclidean Algorithm calculation of $gcd(r_0, r_1)$, then it turns out that the last pair of numbers p_k, q_k in the table are given by $p_k = r_0/d$ and $q_k = r_1/d$. The following proposition is easy to prove by induction.

***Proposition:** Let a_1, a_2, a_3, \ldots be any sequence of numbers, and for all integers $i \ge -1$ let p_i and q_i be the numbers in the Magic Table, as described above. Then for all positive integers n,

$$p_n q_{n+1} - p_{n+1} q_n = (-1)^n = \begin{cases} 1 & \text{if } n \text{ is even,} \\ -1 & \text{if } n \text{ is odd;} \end{cases}$$

and

$$p_n q_{n+2} - p_{n+2} q_n = (-1)^n a_{n+2}.$$

In particular, if a_1, a_2, \ldots, a_k are the quotients from the Euclidean Algorithm for $gcd(r_0, r_1)$, then

$$p_{k-1}\frac{r_1}{d} - q_{k-1}\frac{r_0}{d} = p_{k-1}q_k - p_kq_{k-1} = (-1)^{k-1},$$

and so $(-1)^{k-1}p_{k-1}r_1 + (-1)^kq_{k-1}r_0 = d$. That is, the Magic Table gives us a way to find a pair of numbers p and q satisfying $pr_1 + qr_0 = \gcd(r_0, r_1)$: put $p = (-1)^{k-1}p_{k-1}$ and $q = (-1)^kq_{k-1}$.

Example: Does 288 have an inverse in \mathbb{Z}_{377} ? If so, find it. Applying the Euclidean Algorithm with $r_0 = 377$ and $r_1 = 288$ gives

$$377 = 1 \times 288 + 89$$

$$288 = 3 \times 89 + 21$$

$$89 = 4 \times 21 + 5$$

$$21 = 4 \times 5 + 1$$

$$5 = 5 \times 1$$

Thus the sequence of quotients a_i is 1, 3, 4, 4, 5. Now form the Magic Table.

Now $72 \times 288 - 55 \times 377 = (-1)^4 = 1$. So $72 \times 288 \equiv 1 \pmod{377}$. So $72 = 288^{-1}$ in \mathbb{Z}_{377} .

***Proposition:** An element $a \in \mathbb{Z}_n$ has an inverse if and only if gcd(a, n) = 1.

Lecture 4

Every real number can be uniquely expressed as the sum of its *integer part* and its *fractional part*, where here "fractional" means between 0 and 1 (including 0 but excluding 1).

Notation: [x] = integer part of x = largest integer less than or equal to x. The steps involved in the Euclidean Algorithm for gcd(248, 192) go as follows:

$$248 = 1 \times 192 + 56$$

$$192 = 3 \times 56 + 24$$

$$56 = 2 \times 24 + 8$$

$$24 = 3 \times 8.$$

We can rewrite these as follows:

$$\frac{248}{192} = 1 + \frac{56}{192}$$
$$\frac{192}{56} = 3 + \frac{24}{56}$$
$$\frac{56}{24} = 2 + \frac{8}{24}$$
$$\frac{24}{8} = 3.$$

Putting these equations together gives

$$\frac{248}{192} = 1 + \frac{56}{192} = 1 + \frac{1}{192/56} = 1 + \frac{1}{3 + \frac{24}{56}} = \dots$$

and eventually

$$\frac{248}{192} = 1 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}}$$

Such expressions are called *continued fractions*.

We clearly need a more compact notation for continued fractions. Hence we make the following definition. If a_1, a_2, \ldots, a_k are any positive numbers, define

$$[a_1, a_2, \dots, a_k] = a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\cdots a_{k-1} + \frac{1}{a_k}}}}$$

If the a_i are positive integers then we call $[a_1, a_2, \ldots, a_k]$ a simple continued fraction. The numbers a_1, a_2, a_3, \ldots are called the *partial quotients*, and $[a_1], [a_1, a_2], [a_1, a_2, a_3]$, etc. the convergents of $[a_1, a_2, \ldots, a_k]$.

***Theorem:** If a_1, a_2, \ldots, a_k is any sequence of positive numbers, and for all *i* from -1 to *k* the numbers p_i, q_i are computed from the a_i 's by means of a Magic Table, as above, then $[a_1, a_2, \ldots, a_k] = p_k/q_k$.

It is a fact that if p/q is a convergent of the continued fraction for a number α , then $|\alpha - (p/q)| < (1/q^2)$.