Week 2 Summary

Lecture 3

Suppose that r_{0} and r_{1} are nonnegative integers, not both zero. Choose the notation so that $r_{0} \geq r_{1}$. The greatest common divisor $d=\operatorname{gcd}\left(r_{0}, r_{1}\right)$ can be found as follows.
If $r_{1}=0$ then the gcd is just r_{0}. (For example, $\operatorname{gcd}(6,0)=6$. Remember that 0 is a multiple of everything!) If $r_{1}>0$ then divide r_{0} by r_{1} to get a quotient a_{1} and remainder r_{2}. If $r_{2}=0$ then the gcd is r_{1}; otherwise, divide r_{2} into r_{1}, obtaining quotient a_{2} and remainder r_{3}. Continue in this way until a remainder of zero is obtained. So we get the following setup, where the r_{i} 's and a_{i} 's are integers:

$$
\begin{array}{rlr}
r_{0} & =a_{1} r_{1}+r_{2} & \\
r_{1} & =a_{2} r_{2}+r_{3} & \left(0<r_{2}<r_{1}\right) \\
r_{2} & =a_{3} r_{3}+r_{4} & \left(0<r_{3}<r_{2}\right) \\
& \vdots \\
r_{k-2} & =a_{k-1} r_{k-1}+r_{k} & \left(0<r_{4}<r_{3}\right) \\
r_{k-1} & =a_{k} r_{k}
\end{array}
$$

Using the proposition from the end of Lecture 2 we see that

$$
\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\operatorname{gcd}\left(r_{2}, r_{3}\right)=\cdots=\operatorname{gcd}\left(r_{k-1}, r_{k}\right)=\operatorname{gcd}\left(r_{k}, 0\right)=r_{k} .
$$

That is, d (the gcd of r_{0} and r_{1}) equals r_{k}, the last nonzero remainder obtained in the above process.
It is always possible to find integers p and q such that $p r_{1}+q r_{0}=\operatorname{gcd}\left(r_{0}, r_{1}\right)$. One way to do this is by working backwards through the above equations. The second to last equation gives $r_{k}=\left(-a_{k-1}\right) r_{k-1}+r_{k-2}$, expressing r_{k} as a linear combination of r_{k-1} and r_{k-2}. The equation previous to that expresses r_{k-1} in terms of r_{k-2} and r_{k-3}, and if we substitute this expression for r_{k-1} into our expression for r_{k} we get r_{k} expressed in terms of r_{k-3} and r_{k-2}. But the next equation back gives a formula for r_{k-2}, and substituting this into the formula for r_{k} now expresses r_{k} in terms of r_{k-4} and r_{k-3}. Continuing like this we eventually get r_{k} expressed in terms of r_{0} and r_{1}. See the example on pages 26,27 of Walters' book.
There is way to do this, using something we call a Magic Table. Given a sequence of numbers $a_{1}, a_{2}, a_{3}, \ldots$, we define $p_{-1}=0, p_{0}=1$ and $q_{-1}=1, q_{0}=0$, and successively compute the numbers p_{k} and q_{k} in the following table

	a_{1}	a_{2}	a_{3}	a_{4}	\cdots	
0	1	p_{1}	p_{2}	p_{3}	p_{4}	\cdots
1	0	q_{1}	q_{2}	q_{3}	q_{4}	\cdots

using the recurrence relations

$$
\begin{aligned}
p_{k} & =a_{k} p_{k-1}+p_{k-2} \\
q_{k} & =a_{k} q_{k-1}+q_{k-2}
\end{aligned}
$$

If one constructs this table using the sequence of quotients $a_{1}, a_{2}, \ldots, a_{k}$ obtained in the Euclidean Algorithm calculation of $\operatorname{gcd}\left(r_{0}, r_{1}\right)$, then it turns out that the last pair of numbers p_{k}, q_{k} in the table are given by $p_{k}=r_{0} / d$ and $q_{k}=r_{1} / d$. The following proposition is easy to prove by induction.
*Proposition: Let $a_{1}, a_{2}, a_{3}, \ldots$ be any sequence of numbers, and for all integers $i \geq-1$ let p_{i} and q_{i} be the numbers in the Magic Table, as described above. Then for all positive integers n,

$$
p_{n} q_{n+1}-p_{n+1} q_{n}=(-1)^{n}= \begin{cases}1 & \text { if } n \text { is even } \\ -1 & \text { if } n \text { is odd }\end{cases}
$$

and

$$
p_{n} q_{n+2}-p_{n+2} q_{n}=(-1)^{n} a_{n+2} .
$$

In particular, if $a_{1}, a_{2}, \ldots, a_{k}$ are the quotients from the Euclidean Algorithm for $\operatorname{gcd}\left(r_{0}, r_{1}\right)$, then

$$
p_{k-1} \frac{r_{1}}{d}-q_{k-1} \frac{r_{0}}{d}=p_{k-1} q_{k}-p_{k} q_{k-1}=(-1)^{k-1}
$$

and so $(-1)^{k-1} p_{k-1} r_{1}+(-1)^{k} q_{k-1} r_{0}=d$. That is, the Magic Table gives us a way to find a pair of numbers p and q satisfying $p r_{1}+q r_{0}=\operatorname{gcd}\left(r_{0}, r_{1}\right)$: put $p=(-1)^{k-1} p_{k-1}$ and $q=(-1)^{k} q_{k-1}$.
Example: Does 288 have an inverse in \mathbb{Z}_{377} ? If so, find it.
Applying the Euclidean Algorithm with $r_{0}=377$ and $r_{1}=288$ gives

$$
\begin{aligned}
377 & =1 \times 288+89 \\
288 & =3 \times 89+21 \\
89 & =4 \times 21+5 \\
21 & =4 \times 5+1 \\
5 & =5 \times 1
\end{aligned}
$$

Thus the sequence of quotients a_{i} is $1,3,4,4,5$. Now form the Magic Table.

		1	3	4	4	5
0	1	1	4	17	72	377
1	0	1	3	13	55	288

Now $72 \times 288-55 \times 377=(-1)^{4}=1$. So $72 \times 288 \equiv 1(\bmod 377)$. So $72=288^{-1}$ in \mathbb{Z}_{377}.
*Proposition: An element $a \in \mathbb{Z}_{n}$ has an inverse if and only if $\operatorname{gcd}(a, n)=1$.

Lecture 4

Every real number can be uniquely expressed as the sum of its integer part and its fractional part, where here "fractional" means between 0 and 1 (including 0 but excluding 1).

Notation: $[x]=$ integer part of $x=$ largest integer less than or equal to x. The steps involved in the Euclidean Algorithm for $\operatorname{gcd}(248,192)$ go as follows:

$$
\begin{aligned}
248 & =1 \times 192+56 \\
192 & =3 \times 56+24 \\
56 & =2 \times 24+8 \\
24 & =3 \times 8 .
\end{aligned}
$$

We can rewrite these as follows:

$$
\begin{aligned}
\frac{248}{192} & =1+\frac{56}{192} \\
\frac{192}{56} & =3+\frac{24}{56} \\
\frac{56}{24} & =2+\frac{8}{24} \\
\frac{24}{8} & =3 .
\end{aligned}
$$

Putting these equations together gives

$$
\frac{248}{192}=1+\frac{56}{192}=1+\frac{1}{192 / 56}=1+\frac{1}{3+\frac{24}{56}}=\cdots
$$

and eventually

$$
\frac{248}{192}=1+\frac{1}{3+\frac{1}{2+\frac{1}{3}}}
$$

Such expressions are called continued fractions.
We clearly need a more compact notation for continued fractions. Hence we make the following definition. If $a_{1}, a_{2}, \ldots, a_{k}$ are any positive numbers, define

$$
\left[a_{1}, a_{2}, \ldots, a_{k}\right]=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}
$$

If the a_{i} are positive integers then we call $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ a simple continued fraction. The numbers $a_{1}, a_{2}, a_{3}, \ldots$ are called the partial quotients, and $\left[a_{1}\right],\left[a_{1}, a_{2}\right]$, [$\left.a_{1}, a_{2}, a_{3}\right]$, etc. the convergents of $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$.
*Theorem: If $a_{1}, a_{2}, \ldots, a_{k}$ is any sequence of positive numbers, and for all i from -1 to k the numbers p_{i}, q_{i} are computed from the a_{i} 's by means of a Magic Table, as above, then $\left[a_{1}, a_{2}, \ldots, a_{k}\right]=p_{k} / q_{k}$.
It is a fact that if p / q is a convergent of the continued fraction for a number α, then $|\alpha-(p / q)|<\left(1 / q^{2}\right)$.

