Week 9 Summary

Lecture 17

Let n_1, n_2, \ldots, n_k be positive integers. The *direct sum* of $\mathbb{Z}_{n_1}, \mathbb{Z}_{n_2}, \ldots, \mathbb{Z}_{n_k}$ is defined to be the set of all k-tuples (a_1, a_2, \ldots, a_k) such that $a_i \in \mathbb{Z}_{n_i}$ for each i. We use " \oplus " to denote direct sum. Thus,

$$\mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7 = \{ (a, b, c) \mid a \in \mathbb{Z}_3, b \in \mathbb{Z}_5, c \in \mathbb{Z}_7 \}.$$

We can define addition and multiplication for k-tuples componentwise. Thus in $\mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7$ we have

and

$$(2,4,3) + (2,3,6) = (4,7,9) = (1,2,2)$$

 $(2,4,3)(2,3,6) = (4,12,18) = (1,2,4).$

Since 3, 5 and 7 are divisors of 105 there are homomorphisms from \mathbb{Z}_{105} to \mathbb{Z}_3 , \mathbb{Z}_5 and \mathbb{Z}_7 , as explained in Lecture 16. If we call these f, g and h (respectively) then we can combine them into a homomorphism from \mathbb{Z}_{105} to $\mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7$ given by the rule

$$a \mapsto (f(a), g(a), h(a))$$

for all $a \in \mathbb{Z}_{105}$. Thus, for example,

$$56 \mapsto (56, 56, 56) = (2, 1, 0)$$

(since 56 = 2 in \mathbb{Z}_3 , and so on). The Chinese Remainder Theorem tells us that this mapping is a one to one correspondence between between \mathbb{Z}_{105} and $\mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7$, since for each triples (a, b, c) in $\mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7$ there is a unique $x \in \mathbb{Z}_{105}$ such that $x \equiv a \pmod{3}$, $x \equiv b \pmod{5}$ and $x \equiv c \pmod{7}$. We can, for example, find the element of \mathbb{Z}_{105} that maps to (1, 4, 3) by solving the simultaneous congruences $x \equiv 1 \pmod{3}$, $x \equiv 4 \pmod{5}$ and $x \equiv 3 \pmod{7}$ using the method given in Lecture 15. The solution is 94.

A homomorphism that is a one to one correspondence is called an *isomorphism*. The Chinese Remainder Theorem can be restated as follows: if m_1, m_2, \ldots, m_k are pairwise coprime then there is an isomorphism

$$\mathbb{Z}_{m_1m_2\cdots m_k} \longrightarrow \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \ldots \oplus \mathbb{Z}_{m_k}$$

given by $a \mapsto (a_1, a_2, \ldots, a_k)$ (for all a), where $a \equiv a_i \pmod{m_i}$ for each i. We say that $\mathbb{Z}_{m_1m_2\cdots m_k}$ and $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \ldots \oplus \mathbb{Z}_{m_k}$ are *isomorphic*.

In the Chinese Remainder Theorem isomorphism, the element of the direct sum $\mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \ldots \oplus \mathbb{Z}_{m_k}$ corresponding to $1 \in \mathbb{Z}_{m_1m_2\cdots m_k}$ is the k-tuple $(1, 1, \ldots, 1)$. So if $a \in \mathbb{Z}_{m_1m_2\cdots m_k}$ corresponds to $(a_1, a_2, \ldots, a_k) \in \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \ldots \oplus \mathbb{Z}_{m_k}$ then *a* has an inverse in $\mathbb{Z}_{m_1m_2\cdots m_k}$ if and only if a_i has an inverse in \mathbb{Z}_{m_i} for each *i*. This yields the following Proposition.

***Proposition:** If $m_1, m_2, \ldots m_k$ are pairwise coprime positive integers then $\varphi(m_1m_2\cdots m_k) = \varphi(m_1)\varphi(m_2)\cdots\varphi(m_k).$

The proof consists of recalling that the number of invertible elements of \mathbb{Z}_m is $\varphi(m)$, and hence the number of k-tuples $(a_1, a_2, \ldots, a_k) \in \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \ldots \oplus \mathbb{Z}_{m_k}$ such that each a_i is invertible is $\varphi(m_1)\varphi(m_2)\cdots\varphi(m_k)$.

***Proposition:** If p is prime and $n \in \mathbb{Z}^+$ then $\varphi(p^n) = p^n - p^{n-1} = p^n(1 - \frac{1}{p})$.

***Proposition:** If m is a positive integer then

$$\varphi(m) = m(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\cdots(1 - \frac{1}{p_k})$$

where p_1, p_2, \ldots, p_k are the distinct prime divisors of m.

For example,
$$\varphi(700) = 700(1 - (1/2))(1 - (1/5))(1 - (1/7)) = \frac{700 \times 4 \times 6}{2 \times 5 \times 7} = 240.$$

Lecture 18

Example: Solve, in \mathbb{Z}_{105} , the equation $x^3 = 41$.

By the Chinese Remainder Theorem, each $x \in \mathbb{Z}_{105}$ corresponds to a triple (x_1, x_2, x_3) in $\mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7$. Consequently the problem can be restated as follows: solve $(x_1^3, x_2^3, x_3^3) = (41, 41, 41) = (2, 1, 6)$ in $\mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_7$. Now the cubes of the elements 0, 1 and 2 in \mathbb{Z}_3 are (respectively) 0, 1 and 8 = 2; so $x_1^3 = 2$ gives $x_1 = 2$. In \mathbb{Z}_5 the cubes of 0, 1, 2, 3 = -2 and 4 = -1 are 0, 1, 8 = 3, -8 = 2 and -1 = 4. So $x_2^3 = 1$ gives $x_2 = 1$. In \mathbb{Z}_7 the cubes of 0, 1, 2, 3, -3, -2 and -1 are 0, 1, 8 = 1, 27 = -1, -27 = 1, -8 = -1 and -1. So $x_3^3 = 6 = -1$ gives $x_3 = 3, 5$ or 6. So there are three solutions:

$$(x_1, x_2, x_3) = (2, 1, 3), (2, 1, 5)$$
or $(2, 1, 6).$

The corresponding elements of \mathbb{Z}_{105} are found by using the same method as used in the example given in Lecture 16. For example, the element $x \in \mathbb{Z}_{105}$ such that $x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}$ and $x \equiv 5 \pmod{7}$ is 26. The other two solutions of $x^3 = 41$ are 94 (corresponding to (2,1,3)) and 41 (corresponding to (2,1,6)). Let $f(x) = x^k + a_1 x^{k-1} + \cdots + a_{k-1} x + a_k$ be a polynomial over \mathbb{Z}_p , where p is some fixed prime number. That is, the coefficients a_i are integers modulo p, and we shall cosider values of x in \mathbb{Z}_p . If $t \in \mathbb{Z}_p$ then by division of polynomials one can find a polynomial q(x) over \mathbb{Z}_p and an element $r \in \mathbb{Z}_p$ with f(x) = (x-t)q(x)+r. Putting x = t gives r = f(t): this result is known as the *Remainder Theorem*. It follows that x - t is a factor of f(x) if and only if f(t) = 0 (since clearly x - t is a factor of f(x) if and only if the remainder r is zero). It follows that a polynomial equation of degree k over \mathbb{Z}_p can have at most k roots. This is proved by induction on k. In the case k = 1 the equation has the form ax + b = 0 for some nonzero $a \in \mathbb{Z}_p$, and the unique solution is $x = -ba^{-1}$. (Note that the argument fails at this point if p is not prime: for example 2x = 4 has two solutions in \mathbb{Z}_6 .) Now assuming that a polynomial equation of degree k - 1 has at most k - 1 solutions, and let f(x) = 0 be an equation of degree k and that x = t is one solution. Then f(x) = (x - t)g(x) where g(x) has degree k - 1, and if $u \neq t$ is another solution of f(x) = 0 then u must be a solution of g(x) = 0. (Note that this step also fails when p is not prime.) Since g(x) = 0 has at most k - 1 solutions, f(x) = 0 has at most k solutions.

***Proposition:** In \mathbb{Z}_p , where p is prime, $x^{p-1} - 1 = (x-1)(x-2)\cdots(x-(p-1))$. Note that looking at the constant term is this we recover Wilcon's Theorem

Note that looking at the constant term is this we recover Wilson's Theorem: $(p-1)! \equiv -1 \pmod{p}$ when p is prime.

Our next objective is to establish the existence of primitive roots modulo p whenever p is prime. The first step is as follows.

***Proposition:** Let p be prime and q any prime divisor of p-1. Let $p-1 = q^n K$ where K is not divisible by q. Then there is some integer t whose order modulo p is q^n .

The proof goes as follows. By the Euler-Fermat Theorem, since $\varphi(p) = p - 1$, for all integers t not divisible by p we have $(t^K)^{q^n} = t^{Kq^n} = t^{p-1} \equiv 1 \pmod{p}$. It follows that $\operatorname{ord}_p(t^K)$ is a divisor of q^n . Note that the divisors of q^n are precisely the powers q^i of q, from i = 0 to i = n. Apart from q^n itself these are all divisors of q^{n-1} . So if $\operatorname{ord}_p(t^K) \neq q^n$ then $(t^K)^{q^{n-1}} \equiv 1 \pmod{p}$. So if there is no t such that $\operatorname{ord}_p(t^K) = q^n$ then every nonzero $t \in \mathbb{Z}_p$ satisfies $t^{Kq^{n-1}} = 1$. But this means that every nonzero $t \in \mathbb{Z}_p$ is a root of the polynomial equation $x^k - 1 = 0$, where $k = Kq^{n-1}$. So this equation has p - 1 roots. But its degree k is less than p - 1, since $k = Kq^{n-1} < Kq^n = p - 1$, and so it cannot have as many as p - 1roots. So for some t the order of t^K is q^n , and this proves the result.