Week 9 Summary

Lecture 17

Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers. The direct sum of $\mathbb{Z}_{n_{1}}, \mathbb{Z}_{n_{2}} \ldots, \mathbb{Z}_{n_{k}}$ is defined to be the set of all k-tuples $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $a_{i} \in \mathbb{Z}_{n_{i}}$ for each i. We use " \oplus " to denote direct sum. Thus,

$$
\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}=\left\{(a, b, c) \mid a \in \mathbb{Z}_{3}, b \in \mathbb{Z}_{5}, c \in \mathbb{Z}_{7}\right\}
$$

We can define addition and multiplication for k-tuples componentwise. Thus in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$ we have

$$
(2,4,3)+(2,3,6)=(4,7,9)=(1,2,2)
$$

and

$$
(2,4,3)(2,3,6)=(4,12,18)=(1,2,4)
$$

Since 3,5 and 7 are divisors of 105 there are homomorphisms from \mathbb{Z}_{105} to $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ and \mathbb{Z}_{7}, as explained in Lecture 16. If we call these f, g and h (respectively) then we can combine them into a homomorphism from \mathbb{Z}_{105} to $\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$ given by the rule

$$
a \mapsto(f(a), g(a), h(a))
$$

for all $a \in \mathbb{Z}_{105}$. Thus, for example,

$$
56 \mapsto(56,56,56)=(2,1,0)
$$

(since $56=2$ in \mathbb{Z}_{3}, and so on). The Chinese Remainder Theorem tells us that this mapping is a one to one correspondence between between \mathbb{Z}_{105} and $\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$, since for each triples (a, b, c) in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$ there is a unique $x \in \mathbb{Z}_{105}$ such that $x \equiv a(\bmod 3), x \equiv b(\bmod 5)$ and $x \equiv c(\bmod 7)$. We can, for example, find the element of \mathbb{Z}_{105} that maps to $(1,4,3)$ by solving the simultaneous congruences $x \equiv 1(\bmod 3), x \equiv 4(\bmod 5)$ and $x \equiv 3(\bmod 7)$ using the method given in Lecture 15. The solution is 94 .
A homomorphism that is a one to one correspondence is called an isomorphism. The Chinese Remainder Theorem can be restated as follows: if $m_{1}, m_{2}, \ldots, m_{k}$ are pairwise coprime then there is an isomorphism

$$
\mathbb{Z}_{m_{1} m_{2} \cdots m_{k}} \longrightarrow \mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \ldots \oplus \mathbb{Z}_{m_{k}}
$$

given by $a \mapsto\left(a_{1}, a_{2}, \ldots, a_{k}\right)($ for all $a)$, where $a \equiv a_{i}\left(\bmod m_{i}\right)$ for each i. We say that $\mathbb{Z}_{m_{1} m_{2} \cdots m_{k}}$ and $\mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \ldots \oplus \mathbb{Z}_{m_{k}}$ are isomorphic.
In the Chinese Remainder Theorem isomorphism, the element of the direct sum $\mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \ldots \oplus \mathbb{Z}_{m_{k}}$ corresponding to $1 \in \mathbb{Z}_{m_{1} m_{2} \cdots m_{k}}$ is the k-tuple $(1,1, \ldots, 1)$. So if $a \in \mathbb{Z}_{m_{1} m_{2} \cdots m_{k}}$ corresponds to $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \ldots \oplus \mathbb{Z}_{m_{k}}$ then
a has an inverse in $\mathbb{Z}_{m_{1} m_{2} \cdots m_{k}}$ if and only if a_{i} has an inverse in $\mathbb{Z}_{m_{i}}$ for each i. This yields the following Proposition.
*Proposition: If $m_{1}, m_{2}, \ldots m_{k}$ are pairwise coprime positive integers then $\varphi\left(m_{1} m_{2} \cdots m_{k}\right)=\varphi\left(m_{1}\right) \varphi\left(m_{2}\right) \cdots \varphi\left(m_{k}\right)$.

The proof consists of recalling that the number of invertible elements of \mathbb{Z}_{m} is $\varphi(m)$, and hence the number of k-tuples $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \ldots \oplus \mathbb{Z}_{m_{k}}$ such that each a_{i} is invertible is $\varphi\left(m_{1}\right) \varphi\left(m_{2}\right) \cdots \varphi\left(m_{k}\right)$.
*Proposition: If p is prime and $n \in \mathbb{Z}^{+}$then $\varphi\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n}\left(1-\frac{1}{p}\right)$.
*Proposition: If m is a positive integer then

$$
\varphi(m)=m\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

where $p_{1}, p_{2}, \ldots, p_{k}$ are the distinct prime divisors of m.
For example, $\varphi(700)=700(1-(1 / 2))(1-(1 / 5))(1-(1 / 7))=\frac{700 \times 4 \times 6}{2 \times 5 \times 7}=240$.

Lecture 18

Example: Solve, in \mathbb{Z}_{105}, the equation $x^{3}=41$.
By the Chinese Remainder Theorem, each $x \in \mathbb{Z}_{105}$ corresponds to a triple $\left(x_{1}, x_{2}, x_{3}\right)$ in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$. Consequently the problem can be restated as follows: solve $\left(x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right)=(41,41,41)=(2,1,6)$ in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$. Now the cubes of the elements 0,1 and 2 in \mathbb{Z}_{3} are (respectively) 0,1 and $8=2$; so $x_{1}^{3}=2$ gives $x_{1}=2$. In \mathbb{Z}_{5} the cubes of $0,1,2,3=-2$ and $4=-1$ are $0,1,8=3,-8=2$ and $-1=4$. So $x_{2}^{3}=1$ gives $x_{2}=1$. In \mathbb{Z}_{7} the cubes of $0,1,2,3,-3,-2$ and -1 are 0,1 , $8=1,27=-1,-27=1,-8=-1$ and -1 . So $x_{3}^{3}=6=-1$ gives $x_{3}=3,5$ or 6 . So there are three solutions:

$$
\left(x_{1}, x_{2}, x_{3}\right)=(2,1,3),(2,1,5) \text { or }(2,1,6) .
$$

The corresponding elements of \mathbb{Z}_{105} are found by using the same method as used in the example given in Lecture 16. For example, the element $x \in \mathbb{Z}_{105}$ such that $x \equiv 2(\bmod 3), x \equiv 1(\bmod 5)$ and $x \equiv 5(\bmod 7)$ is 26 . The other two solutions of $x^{3}=41$ are 94 (corresponding to $(2,1,3)$) and 41 (corresponding to $(2,1,6)$).
Let $f(x)=x^{k}+a_{1} x^{k-1}+\cdots+a_{k-1} x+a_{k}$ be a polynomial over \mathbb{Z}_{p}, where p is some fixed prime number. That is, the coefficients a_{i} are integers modulo p , and we shall cosider values of x in \mathbb{Z}_{p}. If $t \in \mathbb{Z}_{p}$ then by division of polynomials one can find a polynomial $q(x)$ over \mathbb{Z}_{p} and an element $r \in \mathbb{Z}_{p}$ with $f(x)=(x-t) q(x)+r$. Putting $x=t$ gives $r=f(t)$: this result is known as the Remainder Theorem. It follows that $x-t$ is a factor of $f(x)$ if and only if $f(t)=0$ (since clearly $x-t$ is a factor of $f(x)$ if and only if the remainder r is zero). It follows that a polynomial equation of degree k over \mathbb{Z}_{p} can have at most k roots. This is proved by induction on k. In the case $k=1$ the equation has the form $a x+b=0$ for some nonzero
$a \in \mathbb{Z}_{p}$, and the unique solution is $x=-b a^{-1}$. (Note that the argument fails at this point if p is not prime: for example $2 x=4$ has two solutions in \mathbb{Z}_{6}.) Now assuming that a polynomial equation of degree $k-1$ has at most $k-1$ solutions, and let $f(x)=0$ be an equation of degree k and that $x=t$ is one solution. Then $f(x)=(x-t) g(x)$ where $g(x)$ has degree $k-1$, and if $u \neq t$ is another solution of $f(x)=0$ then u must be a solution of $g(x)=0$. (Note that this step also fails when p is not prime.) Since $g(x)=0$ has at most $k-1$ solutions, $f(x)=0$ has at most k solutions.
*Proposition: In \mathbb{Z}_{p}, where p is prime, $x^{p-1}-1=(x-1)(x-2) \cdots(x-(p-1))$.
Note that looking at the constant term is this we recover Wilson's Theorem: $(p-1)!\equiv-1(\bmod p)$ when p is prime.

Our next objective is to establish the existence of primitive roots modulo p whenever p is prime. The first step is as follows.
*Proposition: Let p be prime and q any prime divisor of $p-1$. Let $p-1=q^{n} K$ where K is not divisible by q. Then there is some integer t whose order modulo p is q^{n}.

The proof goes as follows. By the Euler-Fermat Theorem, since $\varphi(p)=p-1$, for all integers t not divisible by p we have $\left(t^{K}\right)^{q^{n}}=t^{K q^{n}}=t^{p-1} \equiv 1(\bmod p)$. It follows that $\operatorname{ord}_{p}\left(t^{K}\right)$ is a divisor of q^{n}. Note that the divisors of q^{n} are precisely the powers q^{i} of q, from $i=0$ to $i=n$. Apart from q^{n} itself these are all divisors of q^{n-1}. So if $\operatorname{ord}_{p}\left(t^{K}\right) \neq q^{n}$ then $\left(t^{K}\right)^{q^{n-1}} \equiv 1(\bmod p)$. So if there is no t such that $\operatorname{ord}_{p}\left(t^{K}\right)=q^{n}$ then every nonzero $t \in \mathbb{Z}_{p}$ satisfies $t^{K q^{n-1}}=1$. But this means that every nonzero $t \in \mathbb{Z}_{p}$ is a root of the polynomial equation $x^{k}-1=0$, where $k=K q^{n-1}$. So this equation has $p-1$ roots. But its degree k is less than $p-1$, since $k=K q^{n-1}<K q^{n}=p-1$, and so it cannot have as many as $p-1$ roots. So for some t the order of t^{K} is q^{n}, and this proves the result.

