Semester 0, 2002	Lecturer:
------------------	-----------

Tutorial 2

1. Let X be any non-empty set. Define d(x, y) by $d(x, y) = \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{if } x \neq y. \end{cases}$

Show that d is a metric on X.

Solution.

It is immediate that d(x, y) = d(y, x) for all $x, y \in X$, with d(x, y) = 0 if and only if x = y. So it remains to prove that $d(y, z) \leq d(x, y) + d(x, z)$ for all $x, y, z \in X$. Now $d(x, y) + d(x, z) \geq 1$ unless d(x, y) = d(x, z) = 0, which only happens if x = y and x = z, in which case d(y, z) = 0 also, giving d(y, z) = d(x, y) + d(y, z). And when $d(x, y) + d(x, z) \geq 1$ it is also true that $d(y, z) \leq d(x, y) + d(x, z)$, since $d(y, z) \leq 1$.

2. For $x = (x_1, x_2)$ and $y = (y_1, y_2)$, define

$$\begin{aligned} d(x,y) &= |x_1 - y_1| + |x_2 - y_2| \\ d'(x,y) &= \max(|x_1 - y_1|, |x_2 - y_2|) \\ d''(x,y) &= \min(|x_1 - y_1|, |x_2 - y_2|). \end{aligned}$$
 of d, d', d'' are metrics on \mathbb{R}^2 ?

Solution.

Which

We showed in lectures that $d_p(x, y) = \sqrt[p]{|x_1 - y_1|^p + |x_2 - y_2|^p}$ is a metric on \mathbb{R}^2 for all $p \ge 1$. (In fact, we showed the analogous result for \mathbb{C}^n .) The function d defined above is d_1 , and is therefore a metric. The main part of the proof is the observation that

 $|y_1 - z_1| + |y_2 - z_2| \le (|x_1 - y_1| + |x_2 - y_2|) + (|x_1 - z_1| + |x_2 - x_2|)$ for all x_i , y_i and z_i (which follows from $|a+b| \le |a|+|b|$ by putting $a = y_i - x_i$ and $b = x_i - z_i$).

We also proved in lectures that $d_{\infty}(x,y) = \lim_{p \to \infty} d_p(x,y) = \max_i |x_i - y_i|$. That is, the function d' defined above coincides with d_{∞} for \mathbb{R}^2 . It is also a metric, since for some j,

 $\max_{i} |y_i - z_i| = |y_j - z_j| \le |y_j - x_j| + |x_j - z_j| \le \max_{i} |x_i - y_i| + \max_{i} |x_i - z_i|,$ the other requirements being obviously satisfied.

The function d'' is not a metric, since (for example) d''((0,1), (0,0)) = 0, even though $(0,1) \neq (0,0)$.

3. Let $X = \ell^{\infty}$, the set of all bounded real sequences, that is all real infinite sequences (x_k) such that $\sup_{k \in \mathbb{N}} |x_k| < \infty$, and for $x, y \in X$, define

$$d(x, y) = \sup_{k \in \mathbb{N}} |x_k - y_k|.$$

Show that d is a metric on X.

Solution.

Let $x, y \in X$. Then x, y are bounded sequences, and so there exist $A, B \in R$ such that $|x_k| < A$ and $|y_k| < B$ for all $k \in \mathbb{N}$. So $|x_k - y_k| \le |x_k| + |y_k| < A + B$ for all k, and therefore $\sup_k |x_k - y_k|$ exists (since every bounded set of real numbers has a supremum). So d is well-defined. Since $|x_k - y_k| = |y_k - x_k|$ for all k it follows that d(x, y) = d(y, x). If d(x, y) = 0 then for all i we have $0 \le |x_i - y_i| \le \sup_k |x_k - y_k| = 0$, and so x = y; conversely, clearly d(x, x) = 0for all $x \in X$. So it remains to prove the triangle inequality.

Let $x, y, z \in X$. For all $i \in \mathbb{N}$ we have

$$|y_i - z_i| \le |y_i - x_i| + |x_i - z_i| \le \sup_k |x_k - y_k| + \sup_k |y_k - z_k| = d(x, y) + d(x, z)$$

So d(x, y) + d(x, z) is an upper bound for the set $\{|y_i - z_i| \mid i \in \mathbb{N}\}$, and it follows that $\sup_i |y_i - z_i| \leq d(x, y) + d(x, z)$. That is, $d(y, z) \leq d(x, y) + d(x, z)$, as required.

4. Let C[a, b] be the set of all continuous real-valued functions defined on [a, b]. For $f, g \in C[a, b]$ define

$$d_1(f, g) = \sup_{x \in [a, b]} |f(x) - g(x)|$$
$$d_2(f, g) = \int_a^b |f(x) - g(x)| \, dx$$

Show that d_1 and d_2 are metrics on $\mathcal{C}[a, b]$.

Solution.

It is a standard theorem of real analysis that a continuous function on a closed interval achieves a maximum value on the interval. So for each pair of elements $f, g \in C[a, b]$ there exists a $t \in [a, b]$ such that $d_1(f, g) = |f(t) - g(t)|$. So if $f, g, h \in C[a, b]$, then, for some $t \in [a, b]$,

$$d_1(f,g) = |f(t) - g(t)| \le |f(t) - h(t)| + |h(t) - g(t)| \le d_1(f,h) + d_1(h,g),$$

(since $|f(t) - h(t)| \le \sup_{x \in [a,b]} |f(x) - f(x)| = d_1(f,h)$, etc.). It is clear that $d_1(f,g) = d_1(g,f)$, for all $f, g \in C[a,b]$, since |f(x) - g(x)| = |g(x) - f(x)| for all $x \in [a,b]$. And since $\sup_{x \in [a,b]} |f(x) - g(x)| = 0$ if and only if

Since $\int_a^b |f(x) - g(x)| dx = \int_a^b |g(x) - f(x)| dx$, we have $d_2(f,g) = d_2(g,f)$ for all $f, g \in \mathcal{C}[a, b]$. Clearly $d_2(f, f) = \int_a^b 0 dx = 0$, for all $f \in \mathcal{C}[a, b]$. If $f \neq g$ then there exists $t \in [a, b]$ with |f(t) - g(t)| = c > 0, and by continuity $|f(x) - g(x)| \ge c/2$ for all x in some neighbourhood of t. Thus, there exist p, q with $a \le p < q \le b$ and $|f(x) - g(x)| \ge c/2$ for all $x \in [p, q]$. Since $|f(x) - g(x)| \ge 0$ for all other points $x \in [a, b]$ it follows that

$$d_2(f,g) = \int_a^b |f(x) - g(x)| \, dx \ge (q-p)c/2 > 0.$$

Thus $d_2(f,g) = 0$ only when f = g. And for all $f, g, h \in \mathcal{C}[a,b]$,

$$d_{2}(f,g) = \int_{a}^{b} |f(x) - g(x)| dx$$

$$\leq \int_{a}^{b} |f(x) - h(x)| + |h(x) - g(x)| dx$$

$$\leq \int_{a}^{b} |f(x) - h(x)| dx + \int_{a}^{b} ||h(x) - g(x)| dx$$

$$= d_{2}(f,h) + d_{2}(h,g)$$

5. For x and y in \mathbb{R} , define

$$d'(x, y) = \sqrt{|x - y|}.$$

Show that d' is a metric on \mathbb{R} .

Solution.

It is clear that d'(x, y) = d'(y, x), and d'(x, y) = 0 if and only if x = y. Let $x, y, z \in \mathbb{R}$. Suppose that d'(y, z) > d'(x, y) + d'(x, z). Since $f(x) = x^2$ is an increasing function on $[0, \infty)$ it follows that $(d'(y, z))^2 > (d'(x, y) + d'(x, z))^2$. That is,

$$|y-z| > (\sqrt{|x-y|} + \sqrt{|x-z|})^2 = |x-y| + |x-z| + 2\sqrt{|x-y||x-z|},$$

but since it is a standard fact that

$$|y-x| + |x-z| \ge |y-z|$$

it follows that $2\sqrt{|x-y||x-z|} < 0$, which is impossible. So we must have $d'(y,z) \le d'(x,y) + d'(x,z)$.

6. Let (X, d) be a metric space. Define $d': X \times X \to \mathbb{R}$ by

$$d'(x,y) = \min\left(1, d(x,y)\right).$$

Show that d' is a metric on X.

Solution.

Let $x, y \in X$. Since $d(x, y) = d(y, x) \ge 0$ it follows that

$$d'(y,x) = \min(1, d(y,x)) = \min(1, d(x,y)) = d'(x,y) \ge 0.$$

And if $\min(1, d(x, y)) = 0$ then d(x, y) = 0, which gives x = y since d is a metric. So d'(x, y) = 0 if and only if x = y.

Let $x, y, z \in X$. We must show that $d'(x, y) + d'(x, z) \ge d'(y, z)$. Now $d'(y, z) \le 1$, and so if either d'(x, y) = 1 or d'(x, z) = 1 then the desired inequality holds. But if both d'(x, y) < 1 and d'(x, z) < 1 then

$$d'(x,y) + d'(x,z) = d(x,y) + d(x,z) \ge d(y,z) \ge d'(y,z),$$

as required.

7. Let (X, d) be a metric space. Define $d' : X \times X \to \mathbb{R}$ by

$$d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}.$$

Show that d' is a metric on X.

Solution.

Since $d(x,y) = d(y,x) \ge 0$, also $d'(x,y) = d'(y,x) \ge 0$. And d'(x,y) = 0 if and only if d(x,y) = 0; so d'(x,y) = 0 if and only if x = y. Let $x, y, z \in X$, and put a = d(y,z), b = d(x,y) and c = d(x,z). Then $a \le b + c$. So by Question 7 of Tutorial 2, $\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}$. Thus $d'(y,z) \le d'(x,y) + d'(y,z)$.

8. Let X be the set of all real sequences. For $x = (x_k)$ and $y = (y_k)$ in X, define

$$d(x, y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}.$$

Show that d is a metric on X.

Solution.

Since $\frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|} \leq \frac{1}{2^k}$ the series defining d(x, y) converges. It is clear that $d(x, y) = d(y, x) \geq 0$, and d(x, y) = 0 only if all terms of the series are 0, which forces $x_k = y_k$ for all k, and so x = y. If $x, y, z \in X$ then $|y_k - z_k| \leq |x_k - y_k| + |x_k - z_k|$ for all k, and (as in Question 7) this gives $\frac{|y_k - z_k|}{1 + |y_k - z_k|} \leq \frac{|x_k - y_k|}{1 + |x_k - y_k|} + \frac{|x_k - z_k|}{1 + |x_k - z_k|}$ for all k. Multiplying by $\frac{1}{2^k}$ and summing over k gives $d(y, z) \leq d(x, y) + d(x, z)$.