The University of Sydney
MATH Pure Mathematics 3901

Tutorial 2

1. Let X be any non-empty set. Define $d(x, y)$ by

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}
$$

Show that d is a metric on X.
Solution.
It is immediate that $d(x, y)=d(y, x)$ for all $x, y \in X$, with $d(x, y)=0$ if and only if $x=y$. So it remains to prove that $d(y, z) \leq d(x, y)+d(x, z)$ for all $x, y, z \in X$. Now $d(x, y)+d(x, z) \geq 1$ unless $d(x, y)=d(x, z)=0$, which only happens if $x=y$ and $x=z$, in which case $d(y, z)=0$ also, giving $d(y, z)=d(x, y)+d(y, z)$. And when $d(x, y)+d(x, z) \geq 1$ it is also true that $d(y, z) \leq d(x, y)+d(x, z)$, since $d(y, z) \leq 1$.
2. For $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, define

$$
\begin{aligned}
d(x, y) & =\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| \\
d^{\prime}(x, y) & =\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right) \\
d^{\prime \prime}(x, y) & =\min \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)
\end{aligned}
$$

Which of $d, d^{\prime}, d^{\prime \prime}$ are metrics on \mathbb{R}^{2} ?

Solution.

We showed in lectures that $d_{p}(x, y)=\sqrt[p]{\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}}$ is a metric on \mathbb{R}^{2} for all $p \geq 1$. (In fact, we showed the analogous result for \mathbb{C}^{n}.) The function d defined above is d_{1}, and is therefore a metric. The main part of the proof is the observation that

$$
\left|y_{1}-z_{1}\right|+\left|y_{2}-z_{2}\right| \leq\left(\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|\right)+\left(\left|x_{1}-z_{1}\right|+\left|x_{2}-x_{2}\right|\right)
$$

for all x_{i}, y_{i} and z_{i} (which follows from $|a+b| \leq|a|+|b|$ by putting $a=y_{i}-x_{i}$ and $b=x_{i}-z_{i}$).
We also proved in lectures that $d_{\infty}(x, y)=\lim _{p \rightarrow \infty} d_{p}(x, y)=\max _{i}\left|x_{i}-y_{i}\right|$.
That is, the function d^{\prime} defined above coincides with d_{∞} for \mathbb{R}^{2}. It is also a metric, since for some j,
$\max _{i}\left|y_{i}-z_{i}\right|=\left|y_{j}-z_{j}\right| \leq\left|y_{j}-x_{j}\right|+\left|x_{j}-z_{j}\right| \leq \max _{i}\left|x_{i}-y_{i}\right|+\max _{i}\left|x_{i}-z_{i}\right|$, ${ }^{i}$ the other requirements being obviously satisfied.
The function $d^{\prime \prime}$ is not a metric, since (for example) $d^{\prime \prime}((0,1),(0,0))=0$, even though $(0,1) \neq(0,0)$.
3. Let $X=\ell^{\infty}$, the set of all bounded real sequences, that is all real infinite sequences $\left(x_{k}\right)$ such that $\sup _{k \in \mathbb{N}}\left|x_{k}\right|<\infty$, and for $x, y \in X$, define $\sup _{k \in \mathbb{N}}$

$$
d(x, y)=\sup _{k \in \mathbb{N}}\left|x_{k}-y_{k}\right|
$$

Show that d is a metric on X.

Solution.

Let $x, y \in X$. Then x, y are bounded sequences, and so there exist $A, B \in R$ such that $\left|x_{k}\right|<A$ and $\left|y_{k}\right|<B$ for all $k \in \mathbb{N}$. So $\left|x_{k}-y_{k}\right| \leq\left|x_{k}\right|+\left|y_{k}\right|<A+B$ for all k, and therefore $\sup _{k}\left|x_{k}-y_{k}\right|$ exists (since every bounded set of real numbers has a supremum). So d is well-defined. Since $\left|x_{k}-y_{k}\right|=\left|y_{k}-x_{k}\right|$ for all k it follows that $d(x, y)=d(y, x)$. If $d(x, y)=0$ then for all i we have $0 \leq\left|x_{i}-y_{i}\right| \leq \sup _{k}\left|x_{k}-y_{k}\right|=0$, and so $x=y ;$ conversely, clearly $d(x, x)=0$ for all $x \in X$. So it remains to prove the triangle inequality.
Let $x, y, z \in X$. For all $i \in \mathbb{N}$ we have
$\left|y_{i}-z_{i}\right| \leq\left|y_{i}-x_{i}\right|+\left|x_{i}-z_{i}\right| \leq \sup _{k}\left|x_{k}-y_{k}\right|+\sup _{k}\left|y_{k}-z_{k}\right|=d(x, y)+d(x, z)$.
So $d(x, y)+d(x, z)$ is an upper bound for the set $\left\{\left|y_{i}-z_{i}\right| \mid i \in \mathbb{N}\right\}$, and it follows that $\sup _{i}\left|y_{i}-z_{i}\right| \leq d(x, y)+d(x, z)$. That is, $d(y, z) \leq d(x, y)+d(x, z)$, as required.
4. Let $\mathcal{C}[a, b]$ be the set of all continuous real-valued functions defined on $[a, b]$. For $f, g \in \mathcal{C}[a, b]$ define

$$
\begin{aligned}
& d_{1}(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)| \\
& d_{2}(f, g)=\int_{a}^{b}|f(x)-g(x)| d x
\end{aligned}
$$

Show that d_{1} and d_{2} are metrics on $\mathcal{C}[a, b]$.
Solution.
It is a standard theorem of real analysis that a continuous function on a closed interval achieves a maximum value on the interval. So for each pair of elements $f, g \in \mathcal{C}[a, b]$ there exists a $t \in[a, b]$ such that $d_{1}(f, g)=|f(t)-g(t)|$. So if $f, g, h \in \mathcal{C}[a, b]$, then, for some $t \in[a, b]$,

$$
d_{1}(f, g)=|f(t)-g(t)| \leq|f(t)-h(t)|+|h(t)-g(t)| \leq d_{1}(f, h)+d_{1}(h, g)
$$

(since $|f(t)-h(t)| \leq \sup _{x \in[a, b]}|f(x)-f(x)|=d_{1}(f, h)$, etc.). It is clear that $d_{1}(f, g)=d_{1}(g, f)$, for all $f, g \in \mathcal{C}[a, b]$, since $|f(x)-g(x)|=|g(x)-f(x)|$ for all $x \in[a, b]$. And since $\sup _{x \in[a, b]}|f(x)-g(x)|=0$ if and only if
$|f(x)-g(x)|=0$ for all $x \in[a, b]$, we see that $d_{1}(f, g)=0$ if and only if $f=g$.
Since $\int_{a}^{b}|f(x)-g(x)| d x=\int_{a}^{b}|g(x)-f(x)| d x$, we have $d_{2}(f, g)=d_{2}(g, f)$ for all $f, g \in \mathcal{C}[a, b]$. Clearly $d_{2}(f, f)=\int_{a}^{b} 0 d x=0$, for all $f \in \mathcal{C}[a, b]$. If $f \neq g$ then there exists $t \in[a, b]$ with $|f(t)-g(t)|=c>0$, and by continuity $|f(x)-g(x)| \geq c / 2$ for all x in some neighbourhood of t. Thus, there exist p, q with $a \leq p<q \leq b$ and $|f(x)-g(x)| \geq c / 2$ for all $x \in[p, q]$. Since $|f(x)-g(x)| \geq 0$ for all other points $x \in[a, b]$ it follows that

$$
d_{2}(f, g)=\int_{a}^{b}|f(x)-g(x)| d x \geq(q-p) c / 2>0
$$

Thus $d_{2}(f, g)=0$ only when $f=g$. And for all $f, g, h \in \mathcal{C}[a, b]$,

$$
\begin{aligned}
d_{2}(f, g) & =\int_{a}^{b}|f(x)-g(x)| d x \\
& \leq \int_{a}^{b}|f(x)-h(x)|+|h(x)-g(x)| d x \\
& \leq \int_{a}^{b}|f(x)-h(x)| d x+\int_{a}^{b}| | h(x)-g(x) \mid d x \\
& =d_{2}(f, h)+d_{2}(h, g)
\end{aligned}
$$

5. For x and y in \mathbb{R}, define

$$
d^{\prime}(x, y)=\sqrt{|x-y|}
$$

Show that d^{\prime} is a metric on \mathbb{R}.

Solution.

It is clear that $d^{\prime}(x, y)=d^{\prime}(y, x)$, and $d^{\prime}(x, y)=0$ if and only if $x=y$. Let $x, y, z \in \mathbb{R}$. Suppose that $d^{\prime}(y, z)>d^{\prime}(x, y)+d^{\prime}(x, z)$. Since $f(x)=x^{2}$ is an increasing function on $[0, \infty)$ it follows that $\left(d^{\prime}(y, z)\right)^{2}>\left(d^{\prime}(x, y)+d^{\prime}(x, z)\right)^{2}$. That is,

$$
|y-z|>(\sqrt{|x-y|}+\sqrt{|x-z|})^{2}=|x-y|+|x-z|+2 \sqrt{|x-y||x-z|}
$$

but since it is a standard fact that

$$
|y-x|+|x-z| \geq|y-z|
$$

it follows that $2 \sqrt{|x-y||x-z|}<0$, which is impossible. So we must have $d^{\prime}(y, z) \leq d^{\prime}(x, y)+d^{\prime}(x, z)$.
6. Let (X, d) be a metric space. Define $d^{\prime}: X \times X \rightarrow \mathbb{R}$ by

$$
d^{\prime}(x, y)=\min (1, d(x, y))
$$

Show that d^{\prime} is a metric on X.

Solution.

Let $x, y \in X$. Since $d(x, y)=d(y, x) \geq 0$ it follows that

$$
d^{\prime}(y, x)=\min (1, d(y, x))=\min (1, d(x, y))=d^{\prime}(x, y) \geq 0 .
$$

And if $\min (1, d(x, y))=0$ then $d(x, y)=0$, which gives $x=y$ since d is a metric. So $d^{\prime}(x, y)=0$ if and only if $x=y$.
Let $x, y, z \in X$. We must show that $d^{\prime}(x, y)+d^{\prime}(x, z) \geq d^{\prime}(y, z)$. Now $d^{\prime}(y, z) \leq 1$, and so if either $d^{\prime}(x, y)=1$ or $d^{\prime}(x, z)=1$ then the desired inequality holds. But if both $d^{\prime}(x, y)<1$ and $d^{\prime}(x, z)<1$ then

$$
d^{\prime}(x, y)+d^{\prime}(x, z)=d(x, y)+d(x, z) \geq d(y, z) \geq d^{\prime}(y, z)
$$

as required.
7. Let (X, d) be a metric space. Define $d^{\prime}: X \times X \rightarrow \mathbb{R}$ by

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

Show that d^{\prime} is a metric on X.

Solution.

Since $d(x, y)=d(y, x) \geq 0$, also $d^{\prime}(x, y)=d^{\prime}(y, x) \geq 0$. And $d^{\prime}(x, y)=0$ if and only if $d(x, y)=0$; so $d^{\prime}(x, y)=0$ if and only if $x=y$. Let $x, y, z \in X$, and put $a=d(y, z), b=d(x, y)$ and $c=d(x, z)$. Then $a \leq b+c$. So by Question 7 of Tutorial $2, \frac{a}{1+a} \leq \frac{b}{1+b}+\frac{c}{1+c}$. Thus $d^{\prime}(y, z) \leq d^{\prime}(x, y)+d^{\prime}(y, z)$.
8. Let X be the set of all real sequences. For $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ in X, define

$$
d(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|x_{k}-y_{k}\right|}{1+\left|x_{k}-y_{k}\right|}
$$

Show that d is a metric on X.

Solution.

Since $\frac{1}{2^{k}} \frac{\left|x_{k}-y_{k}\right|}{1+\left|x_{k}-y_{k}\right|} \leq \frac{1}{2^{k}}$ the series defining $d(x, y)$ converges. It is clear that $d(x, y)=d(y, x) \geq 0$, and $d(x, y)=0$ only if all terms of the series are 0 , which forces $x_{k}=y_{k}$ for all k, and so $x=y$. If $x, y, z \in X$ then $\left|y_{k}-z_{k}\right| \leq\left|x_{k}-y_{k}\right|+\left|x_{k}-z_{k}\right|$ for all k, and (as in Question 7) this gives $\frac{\left|y_{k}-z_{k}\right|}{1+\left|y_{k}-z_{k}\right|} \leq \frac{\left|x_{k}-y_{k}\right|}{1+\left|x_{k}-y_{k}\right|}+\frac{\left|x_{k}-z_{k}\right|}{1+\left|x_{k}-z_{k}\right|}$ for all k. Multiplying by $\frac{1}{2^{k}}$ and summing over k gives $d(y, z) \leq d(x, y)+d(x, z)$.

