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1. Let X be any non-empty set. Define d(x, y) by

d(x, y) =
{

0, if x = y,
1, if x 6= y.

Show that d is a metric on X.

Solution.

It is immediate that d(x, y) = d(y, x) for all x, y ∈ X, with d(x, y) = 0 if
and only if x = y. So it remains to prove that d(y, z) ≤ d(x, y) + d(x, z)
for all x, y, z ∈ X. Now d(x, y) + d(x, z) ≥ 1 unless d(x, y) = d(x, z) = 0,
which only happens if x = y and x = z, in which case d(y, z) = 0 also, giving
d(y, z) = d(x, y) + d(y, z). And when d(x, y) + d(x, z) ≥ 1 it is also true that
d(y, z) ≤ d(x, y) + d(x, z), since d(y, z) ≤ 1.

2. For x = (x1, x2) and y = (y1, y2), define
d(x, y) = |x1 − y1|+ |x2 − y2|

d′(x, y) = max(|x1 − y1|, |x2 − y2|)
d′′(x, y) = min(|x1 − y1|, |x2 − y2|).

Which of d, d′, d′′ are metrics on R2?

Solution.

We showed in lectures that dp(x, y) = p
√
|x1 − y1|p + |x2 − y2|p is a metric

on R2 for all p ≥ 1. (In fact, we showed the analogous result for Cn.) The
function d defined above is d1, and is therefore a metric. The main part of
the proof is the observation that

|y1 − z1|+ |y2 − z2| ≤ (|x1 − y1|+ |x2 − y2|) + (|x1 − z1|+ |x2 − x2|)
for all xi, yi and zi (which follows from |a+b| ≤ |a|+ |b| by putting a = yi−xi

and b = xi − zi).
We also proved in lectures that d∞(x, y) = lim

p→∞
dp(x, y) = maxi |xi − yi|.

That is, the function d′ defined above coincides with d∞ for R2. It is also a
metric, since for some j,
max

i
|yi − zi| = |yj − zj | ≤ |yj − xj |+ |xj − zj | ≤ max

i
|xi − yi|+ max

i
|xi − zi|,

the other requirements being obviously satisfied.
The function d′′ is not a metric, since (for example) d′′((0, 1), (0, 0)) = 0, even
though (0, 1) 6= (0, 0).
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3. Let X = `∞, the set of all bounded real sequences, that is all real infinite
sequences (xk) such that sup

k∈N
|xk| < ∞, and for x, y ∈ X, define

d(x, y) = sup
k∈N

|xk − yk|.

Show that d is a metric on X.

Solution.

Let x, y ∈ X. Then x, y are bounded sequences, and so there exist A, B ∈ R
such that |xk| < A and |yk| < B for all k ∈ N. So |xk−yk| ≤ |xk|+|yk| < A+B
for all k, and therefore supk |xk − yk| exists (since every bounded set of real
numbers has a supremum). So d is well-defined. Since |xk − yk| = |yk − xk|
for all k it follows that d(x, y) = d(y, x). If d(x, y) = 0 then for all i we have
0 ≤ |xi−yi| ≤ supk |xk−yk| = 0, and so x = y; conversely, clearly d(x, x) = 0
for all x ∈ X. So it remains to prove the triangle inequality.
Let x, y, z ∈ X. For all i ∈ N we have

|yi− zi| ≤ |yi−xi|+ |xi− zi| ≤ sup
k
|xk−yk|+sup

k
|yk− zk| = d(x, y)+d(x, z).

So d(x, y) + d(x, z) is an upper bound for the set { |yi − zi|
∣∣ i ∈ N }, and it

follows that supi |yi−zi| ≤ d(x, y)+d(x, z). That is, d(y, z) ≤ d(x, y)+d(x, z),
as required.

4. Let C[a, b] be the set of all continuous real-valued functions defined on [a, b].
For f, g ∈ C[a, b] define

d1(f, g) = sup
x∈[a, b]

|f(x)− g(x)|

d2(f, g) =
∫ b

a

|f(x)− g(x)| dx

Show that d1 and d2 are metrics on C[a, b].

Solution.

It is a standard theorem of real analysis that a continuous function on a
closed interval achieves a maximum value on the interval. So for each pair of
elements f, g ∈ C[a, b] there exists a t ∈ [a, b] such that d1(f, g) = |f(t)−g(t)|.
So if f, g, h ∈ C[a, b], then, for some t ∈ [a, b],

d1(f, g) = |f(t)− g(t)| ≤ |f(t)− h(t)|+ |h(t)− g(t)| ≤ d1(f, h) + d1(h, g),

(since |f(t)− h(t)| ≤ supx∈[a,b] |f(x)− f(x)| = d1(f, h), etc.). It is clear that
d1(f, g) = d1(g, f), for all f, g ∈ C[a, b], since |f(x) − g(x)| = |g(x) − f(x)|
for all x ∈ [a, b]. And since supx∈[a,b] |f(x) − g(x)| = 0 if and only if
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|f(x) − g(x)| = 0 for all x ∈ [a, b], we see that d1(f, g) = 0 if and only if
f = g.

Since
∫ b

a
|f(x) − g(x)| dx =

∫ b

a
|g(x) − f(x)| dx, we have d2(f, g) = d2(g, f)

for all f, g ∈ C[a, b]. Clearly d2(f, f) =
∫ b

a
0 dx = 0, for all f ∈ C[a, b]. If

f 6= g then there exists t ∈ [a, b] with |f(t)− g(t)| = c > 0, and by continuity
|f(x) − g(x)| ≥ c/2 for all x in some neighbourhood of t. Thus, there exist
p, q with a ≤ p < q ≤ b and |f(x) − g(x)| ≥ c/2 for all x ∈ [p, q]. Since
|f(x)− g(x)| ≥ 0 for all other points x ∈ [a, b] it follows that

d2(f, g) =
∫ b

a

|f(x)− g(x)| dx ≥ (q − p)c/2 > 0.

Thus d2(f, g) = 0 only when f = g. And for all f, g, h ∈ C[a, b],

d2(f, g) =
∫ b

a

|f(x)− g(x)| dx

≤
∫ b

a

|f(x)− h(x)|+ |h(x)− g(x)| dx

≤
∫ b

a

|f(x)− h(x)| dx +
∫ b

a

||h(x)− g(x)| dx

= d2(f, h) + d2(h, g)

5. For x and y in R, define

d′(x, y) =
√
|x− y|.

Show that d′ is a metric on R.

Solution.

It is clear that d′(x, y) = d′(y, x), and d′(x, y) = 0 if and only if x = y. Let
x, y, z ∈ R. Suppose that d′(y, z) > d′(x, y) + d′(x, z). Since f(x) = x2 is an
increasing function on [0,∞) it follows that (d′(y, z))2 > (d′(x, y)+d′(x, z))2.
That is,

|y − z| > (
√
|x− y|+

√
|x− z|)2 = |x− y|+ |x− z|+ 2

√
|x− y||x− z|,

but since it is a standard fact that

|y − x|+ |x− z| ≥ |y − z|,

it follows that 2
√
|x− y||x− z| < 0, which is impossible. So we must have

d′(y, z) ≤ d′(x, y) + d′(x, z).
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6. Let (X, d) be a metric space. Define d′:X ×X → R by

d′(x, y) = min
(
1, d(x, y)

)
.

Show that d′ is a metric on X.

Solution.

Let x, y ∈ X. Since d(x, y) = d(y, x) ≥ 0 it follows that

d′(y, x) = min(1, d(y, x)) = min(1, d(x, y)) = d′(x, y) ≥ 0.

And if min(1, d(x, y)) = 0 then d(x, y) = 0, which gives x = y since d is a
metric. So d′(x, y) = 0 if and only if x = y.
Let x, y, z ∈ X. We must show that d′(x, y) + d′(x, z) ≥ d′(y, z). Now
d′(y, z) ≤ 1, and so if either d′(x, y) = 1 or d′(x, z) = 1 then the desired
inequality holds. But if both d′(x, y) < 1 and d′(x, z) < 1 then

d′(x, y) + d′(x, z) = d(x, y) + d(x, z) ≥ d(y, z) ≥ d′(y, z),

as required.

7. Let (X, d) be a metric space. Define d′ : X ×X → R by

d′(x, y) =
d(x, y)

1 + d(x, y)
.

Show that d′ is a metric on X.

Solution.

Since d(x, y) = d(y, x) ≥ 0, also d′(x, y) = d′(y, x) ≥ 0. And d′(x, y) = 0 if
and only if d(x, y) = 0; so d′(x, y) = 0 if and only if x = y. Let x, y, z ∈ X,
and put a = d(y, z), b = d(x, y) and c = d(x, z). Then a ≤ b + c. So by
Question 7 of Tutorial 2, a

1+a ≤
b

1+b + c
1+c . Thus d′(y, z) ≤ d′(x, y) + d′(y, z).

8. Let X be the set of all real sequences. For x = (xk) and y = (yk) in X, define

d(x, y) =
∞∑

k=1

1
2k

|xk − yk|
1 + |xk − yk|

.

Show that d is a metric on X.

Solution.

Since 1
2k

|xk−yk|
1+|xk−yk| ≤

1
2k the series defining d(x, y) converges. It is clear

that d(x, y) = d(y, x) ≥ 0, and d(x, y) = 0 only if all terms of the series
are 0, which forces xk = yk for all k, and so x = y. If x, y, z ∈ X then
|yk − zk| ≤ |xk − yk| + |xk − zk| for all k, and (as in Question 7) this gives
|yk−zk|

1+|yk−zk| ≤
|xk−yk|

1+|xk−yk| + |xk−zk|
1+|xk−zk| for all k. Multiplying by 1

2k and summing
over k gives d(y, z) ≤ d(x, y) + d(x, z).


