The University of Sydney
Pure Mathematics 3901

## Tutorial 3

1. Sketch (where possible) the following sets $A$, and decide whether $A$ is an open subset, or a closed subset, or neither, of the appropriate space $\mathbb{R}^{n}$. Then for each $A$, find $\operatorname{Int}(A), \bar{A}$ and $\operatorname{Fr}(A)$.
(i) $A=\bigcup_{n \in \mathbb{N}}(n, n+1)($ where $\mathbb{N}=\{0,1,2, \ldots\})$.
(ii) $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} x_{2}=0\right\}$.
(iii) $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \in \mathbb{Q}\right\}$ (where $\mathbb{Q}$ is the set of rational numbers).
(iv) $A=\left\{\left(x_{1}, 0\right) \in \mathbb{R}^{2} \mid 0<x_{1}<4\right\}$.

Solution.
(i) The set $A$ is the positive half of the real line with the integers removed:

$$
\begin{aligned}
& 0 \\
& \hline
\end{aligned} \mathbf{2}_{3}=4
$$

Since each open interval $(n, n+1)$ is open, the set $A$ is a union of open sets, and hence open. (Note that in $\mathbb{R}^{1}$ with the usual metric, the open interval $(a, b)$ equals the open ball centred at $(a+b) / 2$ with radius $(b-a) / 2$.) Since $A$ is open, $\operatorname{Int}(A)=A$. The closure $\bar{A}$ is the set of all nonnegative real numbers (since every open interval centred at a positive real number contains a point in an interval $(n, n+1)$ for some $n$ ), and

$$
\operatorname{Fr}(A)=\bar{A} \backslash \operatorname{Int}(A)=\{0,1,2, \ldots\}=\mathbb{N}
$$

(ii) This time $A$ is the set of points which lie on one or other of the coordinate axes. $\ddagger$ Any circle whose centre is on one of the axes will contain a point not on either axis; so $A$ has no interior points. That is, $\operatorname{Int}(A)=\emptyset$. On the other hand, the complement of $A$ is open: if $(x, y) \in \mathbb{R}^{2} \backslash A$ then $x \neq 0$ and $y \neq 0$, and and
the open disc with centre $(x, y)$ and radius $\min (|x|,|y|)$ contains no point on either axis (so that $(x, y) \in \operatorname{Int}\left(\mathbb{R}^{2} \backslash A\right)$ ). So $A$ is closed; so $\bar{A}=A$. And $\operatorname{Fr}(A)=\bar{A} \backslash \operatorname{Int}(A)=A$.
(iii) I can't draw this set (points whose $x$-coordinate is rational). It is easily seen that every circle in the plane contains points with rational $x$-coordinate and points with irrational $x$-coordinate. So all points of $\mathbb{R}^{2}$ are in $\bar{A}$ and no points are $\operatorname{in} \operatorname{Int}(A)$. So $\operatorname{Int}(A)=\emptyset$ and $\bar{A}=\mathbb{R}^{2}=\operatorname{Fr}(A)$.
(iv) $A$ is the line segment from $(0,0)$ to $(4,0)$ :
 (The endpoints $(0,0)$ and $(4,0)$ themselves are excluded.) No circle in the plane is composed entirely of points on this line segment; so $\operatorname{Int}(A)=\emptyset$. The points $(0,0)$ and $(4,0)$ are in $\bar{A}$ since any circle centred at either of these points will include points of the line segment $A$. For every other point $(x, y) \in \mathbb{R}^{2}$ which is not in $A$ one can find a circle with centre $(x, y)$ and radius small enough that it does not contain any point on the line segment. Specifically, if $y \neq 0$ we can choose the radius to be $|y| / 2$, and if $y=0$ then $x>4$ or $x<0$, and we can take the radius to be either $\frac{x-4}{2}$ or $\frac{-x}{2}$ (whichever is positive). So such points $(x, y)$ are not in $\bar{A}$. So $\bar{A}$ is the line segment from $(0,0)$ to $(0,4)$ including the endpoints. And since $\operatorname{Int}(A)$ is empty, $\operatorname{Fr}(A)=\bar{A}$.
2. Let $A$ be an open subset of a metric space $(X, d)$ and $a \in A$. Is $A \backslash\{a\}$ open in $X$ ?

Solution.
Yes. Note first that $X \backslash\{a\}$ is open, for if $x \in X \backslash\{a\}$ is arbitrary then $B_{d}\left(x, \frac{1}{2} d(a, x)\right)$ is contained in $X \backslash\{a\}$ (since $a \notin B_{d}\left(x, \frac{1}{2} d(a, x)\right)$ ). Since $A \backslash\{a\}=A \cap(X \backslash\{a\}$, and the intersection of two open sets is always open, the result follows.
3. Let $(X, d)$ be a metric space, and $A, B$ subsets of $X$ with $A \subseteq B$. Prove that $\operatorname{Int}(A) \subseteq \operatorname{Int}(B)$.

Solution.
Let $x \in \operatorname{Int}(A)$ be arbitrary. Then there exists $\varepsilon>0$ with $B_{d}(x, \varepsilon) \subseteq A$. Since $A \subseteq B$ it follows that $B_{d}(x, \varepsilon) \subseteq B$. So $x \in \operatorname{Int}(B)$. This holds for all $x \in \operatorname{Int}(A)$; so $\operatorname{Int}(A) \subseteq \operatorname{Int}(B)$.
4. Let $(X, d)$ be a metric space and $A \subseteq X$. Let $x$ be a limit point of $A$. Prove that every open ball with centre $x$ contains an infinite number of points of $A$, and use this to show that $\left(A^{\prime}\right)^{\prime} \subseteq A^{\prime}$.

Solution.
Let $x$ be a limit point (accumulation point) of $A$, and let $B=B_{d}(x, t)$ be an open ball with centre $x$. Suppose that $B$ does not contain an infinite number of points of $A$. Since $x$ is an accumulation point of $A$ there is at least one point of $A$ in $B \backslash\{x\}$; our assumption says that there are only finitely many such points. So let $a_{1}, a_{2}, \ldots, a_{k}$ be all the points of $(B \backslash\{x\}) \cap A$. Since $a_{i} \neq x$ for each $i$, each distance $d\left(a_{i}, x\right)$ is positive. Put $s=\min _{i}\left(d\left(a_{i}, x\right)\right)$, the smallest of these $k$ positive numbers. Then $d\left(a_{i}, x\right) \geq s$ for each $i$, and so $a_{i} \notin B_{d}(x, s)$ for each $i$. But since $x$ is an accumulation point of $A$ there is a point $a \in\left(B_{d}(x, s) \backslash\{x\}\right) \cap A$. Now $0<d(a, x)<s \leq d\left(a_{1}, x\right)<t$ (since $\left.a_{1} \in B_{d}(x, t)\right)$, and it follows that $a \in\left(B_{d}(x, t) \backslash\{x\}\right) \cap A$. But since $a \neq a_{i}$ for each $i$ (since $\left.d(x, a)<d\left(x, a_{i}\right)\right)$ this contradicts the fact that $a_{1}, a_{2}, \ldots, a_{k}$ are all the points of $\left(B_{d}(x, t) \backslash\{x\}\right) \cap A$. This contradiction shows that our original assumption that $B$ does not contain infinitely many points of $A$ is false. Since $B$ was an arbitrary open ball centred at $x$, we have shown that every such ball contains infinitely many points of $A$.
Let $x \in\left(A^{\prime}\right)^{\prime}$, and let $B$ be an open ball with centre $x$. Then $B$ contains at least one point of $A^{\prime}$; so choose $b \in B \cap A^{\prime}$. Since $b \in B$ and $B$ is open there exists an open ball $B_{1}$ with centre at $b$ and $B_{1} \subseteq B$. Since $b \in A^{\prime}$, every open ball centred at $b$ contains infinitely many points of $A$. In particular, $B_{1}$ contains infinitely many points of $A$, and since $B_{1} \subseteq B$ it follows that $B$ contains infinitely many points of $A$. So $B$ contains at least one point of $A$ different from $x$. This holds for all open balls containing $x$; so $x$ is an accumulation point of $A$. Thus we have shown that every point of $\left(A^{\prime}\right)^{\prime}$ is in $A^{\prime}$; that is, $\left(A^{\prime}\right)^{\prime} \subseteq A^{\prime}$, as required.
5. Let $(X, d)$ be a metric space.
(i) If $A \subseteq B \subseteq X$, prove that $A^{\prime} \subseteq B^{\prime}$.
(ii) If $A$ and $B$ are subsets of $X$, prove that $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$.

## Solution.

(i) Suppose that $A \subseteq B \subseteq X$, and let $x$ be an arbitrary point of $A^{\prime}$. Let $U$ be an open neighbourhood of $x$. Then $(U \backslash\{x\}) \cap A \neq \emptyset$.

But since $A \subseteq B$ it follows that $(U \backslash\{x\}) \cap A \subseteq(U \backslash\{x\}) \cap B$. So $(U \backslash\{x\}) \cap B \neq \emptyset$. This holds for all open sets $U$ with $x \in U$; so $x \in B^{\prime}$. This is true for all $x \in A^{\prime}$; so $A^{\prime} \subseteq B^{\prime}$.
(ii) Since $A \subseteq(A \cup B)$, it follows from (i) that $A^{\prime} \subseteq(A \cup B)^{\prime}$, and equally $B^{\prime} \subseteq(A \cup B)^{\prime}$. So $A^{\prime} \cup B^{\prime} \subseteq(A \cup B)^{\prime}$.
Our strategy now is to show that points which are not in $A^{\prime}$ and not in $B^{\prime}$ are not in $(A \cup B)^{\prime}$ (since this implies that if $x \in(A \cup B)^{\prime}$ then either $x \in A^{\prime}$ or $x \in B^{\prime}$; that is, $(A \cup B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$.) To say that $x \in A^{\prime}$ is to say that for every open neighbourhood $U$ of $x$ the set $A \cap U \backslash\{x\}$ is nonempty. So to say that $x \notin A^{\prime}$ is to say that there exists an open set $U$ containing $x$ such that $A \cap U \backslash\{x\}=\emptyset$. Similarly, if $x \notin B^{\prime}$ then there is an open set $V$ with $x \in V$ and $B \cap V \backslash\{x\}=\emptyset$. Choose such a $U$ and such a $V$. Then $U \cap V$ is open and $x \in U \cap V$. Moreover,

$$
\begin{aligned}
(A \cup B) \cap(U \cap V) \backslash\{x\} & =(A \cap(U \cap V) \backslash\{x\}) \cup(B \cap(U \cap V) \backslash\{x\}) \\
& \subseteq(A \cap U \backslash\{x\}) \cup(B \cap V) \backslash\{x\})=\emptyset
\end{aligned}
$$

So $U \cap V$ is an open neighbourhood of $x$ containing no points of $A \cup B$ different from $x$. So $x \notin(A \cup B)^{\prime}$.
6. Let $(X, d)$ be a metric space and $A, B$ be two subsets of $X$. Prove that:
(i) If $A \subseteq B$, then $\bar{A} \subseteq \bar{B}$.
(ii) $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
(iii) $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$.

Show that equality need not hold in Part (iii).

## Solution.

(i) Recall from lectures that the closure of a set $S$ is a closed set containing $S$ and contained in all the closed sets containing $S$. Now suppose that $A \subseteq B$. Since $B \subseteq \bar{B}$ we have $A \subseteq \bar{B}$. Since $\bar{B}$ is closed and contains $A$, it contains $\bar{A}$, as required.
(ii) We have $A \subseteq \bar{A} \subseteq \bar{A} \cup \bar{B}$ and $B \subseteq \bar{B} \subseteq \bar{A} \cup \bar{B}$. So $A \cup B \subseteq \bar{A} \cup \bar{B}$. Since the union of two closed sets is always closed, $\bar{A} \cup \bar{B}$ is closed. Since it contains $A \cup B$ it must contain the closure of $A \cup B$. So $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$.
$\underline{B y}$ the first part and the fact that $A \subseteq A \cup B$ it follows that $\bar{A} \subseteq \overline{A \cup B}$. Similarly, since $B \subseteq A \cup B$ we find that $\bar{B} \subseteq \overline{A \cup B}$.

So $\bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$. Since the reverse inclusion was proved above, $\bar{A} \cup \bar{B}=\overline{\bar{A} \cup B}$.
(iii) By Part (i) and $A \cap B \subseteq A$ we have $\overline{A \cap B} \subseteq \bar{A}$; similarly $A \cap B \subseteq B$ gives $\overline{A \cap B} \subseteq \bar{B}$. So $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$.
Let $X=\mathbb{R}$ with the usual metric. Let $A$ be the open half-line $(0, \infty)$ and $\underline{B}$ the open half-line $(-\infty, 0)$. Then $A \cap B=\emptyset$, and so $\overline{A \cap B}=\emptyset$. But $\bar{A}=[0, \infty)$ and $\bar{B}=(-\infty, 0]$; so $\bar{A} \cap \bar{B}=\{0\} \neq \overline{A \cap B}$.
7. Let $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}, x_{2} \in \mathbb{Q}\right\}$ (where $\mathbb{Q}$ is the set of all rational numbers). Show that $\bar{A}=\mathbb{R}^{2}$. Deduce that $\mathbb{R}^{2}$ is separable.

## Solution.

A countable union of finite sets is countable: if $A_{1}, A_{2}, A_{3}, \ldots$ are finite sets then we can list all the elements of $\bigcup_{i=1}^{\infty} A_{i}$ by listing the elements of $A_{1}$ first, then the elements of $A_{2}$, then $A_{3}$, and so on. It follows that the set $\mathbb{Z}^{+} \times \mathbb{Z}^{+}=\left\{(m, n) \mid m, n \in \mathbb{Z}^{+}\right\}$is countable: it equals $\bigcup_{i=2}^{\infty} A_{i}$, where $A_{i}=\left\{(m, n) \mid m, n \in \mathbb{Z}^{+}\right.$and $\left.m+n=i\right\}$, a finite set (for each $i \geq 2$ ). Since $(m, n) \mapsto m / n$ is a surjective map from $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$to $\mathbb{Q}^{+}$, the set of positive rational numbers, it follows that $\mathbb{Q}^{+}$is countable. So $\mathbb{Q}$ is countable, since we can list the elements of $\mathbb{Q}$ in the order $q_{1},-q_{1}, q_{2},-q_{2}, \ldots$, where $q_{i}$ is the $i$-th term in a listing ogf the elements of $\mathbb{Q}^{+}$. So we obtain a one to one correspondence between $\mathbb{Z}^{+}$and $\mathbb{Q}$, and therefore there is a one to one correspondence between $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$and $\mathbb{Q} \times \mathbb{Q}$. But $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is countable; so $\mathbb{Q} \times \mathbb{Q}$ is countable. That is, $A$ is countable
Let $(x, y) \in \mathbb{R}^{2}$, and let $\varepsilon>0$ Choose a positive integer $k$ with $10^{-k}<\varepsilon / \sqrt{2}$, and let $X$ be the integer part of $10^{k} x$ and $Y$ the integer part of $10^{k} y$. (That is, $X \in \mathbb{Z}$ satisfies $X \leq 10^{k} x<X+1$, and similarly for $Y$.) Then $\left(10^{-k} X, 10^{-k} Y\right) \in A$, and

$$
\begin{aligned}
d\left(\left(10^{-k} X, 10^{-k} Y\right),(x, y)\right) & =\sqrt{\left|10^{-k} X-x\right|^{2}+\left|10^{-k} Y-y\right|^{2}} \\
& =10^{-k} \sqrt{\left|X-10^{k} x\right|^{2}+\left|Y-10^{k} y\right|^{2}} \\
& <10^{-k} \sqrt{2}<\varepsilon .
\end{aligned}
$$

Thus $B((x, y), \varepsilon)$ contains a point of $A$, and since this holds for all $\varepsilon>0$ it follows that $(x, y) \in \bar{A}$. But $(x, y)$ was an arbitrary point of $\mathbb{R}^{2}$; so $\bar{A}=\mathbb{R}^{2}$. In other words, $A$ is dense in $\mathbb{R}^{2}$. So $\mathbb{R}^{2}$ has a countable dense subset (and this is what separable means).
8. Let $\left(Y, d_{Y}\right)$ a metric subspace of a metric space $(X, d)$ and $H \subseteq Y$. Prove that $H$ is closed in $Y$ if and only if there exists a closed subset $C$ in $X$ such that $H=C \cap Y$.

## Solution.

Let us prove first that a subset $J$ of $Y$ is open in $Y$ if and only if there is an open subset $U$ of $X$ such that $J=U \cap Y$. For $a \in Y$ and $\varepsilon>0$ let us write $B_{Y}(a, \varepsilon)=\left\{y \in Y \mid d_{Y}(a, y)<\varepsilon\right\}$, and observe that $B_{Y}(a, \varepsilon)=Y \cap B_{X}(a, \varepsilon)$, where $B_{X}(a, \varepsilon)=\{x \in X \mid d(a, x)<\varepsilon\}$.
Suppose first that $J=U \cap Y$, where $U$ is open in $X$. Let $a \in J$. Then $a \in U$, and so there is an $\varepsilon>0$ such that $B_{X}(a, \varepsilon) \subseteq U$. So

$$
B_{Y}(a, \varepsilon)=Y \cap B_{X}(a, \varepsilon) \subseteq Y \cap U=J
$$

This shows that $a$ is an interior point of $\bar{J}$ in the metric space $Y$, and since $a$ was an arbitrary point of $J$ it follows that $J$ is open in $Y$.
Conversely, suppose that $J$ is open in $Y$. Then every point of $J$ is contained in an open ball contained in $J$. So $J$ is the union of the sets in the collection $\mathcal{S}=\left\{B_{Y}(a, \varepsilon) \mid B_{Y}(a, \varepsilon) \subseteq J\right\}$. Now let $\mathcal{T}=\left\{B_{X}(a, \varepsilon) \mid B_{Y}(a, \varepsilon) \in \mathcal{S}\right\}$, and let $U$ be the union of all the sets in the collection $\mathcal{T}$. Then $U$ is open, since it is a union of open balls. And

$$
Y \cap U=Y \cap \bigcup_{B \in \mathcal{T}} B=\bigcup_{B \in \mathcal{T}}(Y \cap B)=\bigcup_{D \in \mathcal{S}} D=J
$$

since the sets in the collection $\mathcal{S}$ are precisely the intersections with $Y$ of the sets in $\mathcal{T}$. So $J$ is the intersection with $Y$ of an open subset of $X$.
Observe that $Y \cap C=H$ if and only if $Y \cap(X \backslash C)=Y \backslash H$. Since $H$ is closed in $Y$ if and only if $Y \backslash H$ is open in $Y$, and $C$ is closed in $X$ if and only if $X \backslash C$ is open in $X$, the result follows. (If $H=Y \cap C$ with $C$ closed, then $Y \backslash H=Y \cap(X \backslash C)$ is open since $X \backslash C$ is open; so $H$ is closed. Conversely, if $H$ is closed we can find an open $U$ with $Y \cap U=Y \backslash H$, and then $H=Y \cap C$ where $C=X \backslash U$.)
9. Let $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers, considered as a subspace of the metric space ( $\mathbb{R}, d$ ) (where $d$ is the usual metric). Describe the open sets of $\mathbb{Z}^{+}$.

## Solution.

With this metric, all subsets of $\mathbb{Z}^{+}$are open. If $n \in \mathbb{Z}^{+}$then the open ball with radius $1 / 2$ centred at $n$ contains $n$ and no other element of $\mathbb{Z}^{+}$. So $\{n\}$ is an open set in $\mathbb{Z}^{+}$. Since every subset of $\mathbb{Z}^{+}$is a union of sets of this form, all subsets of $\mathbb{Z}^{+}$are open.

