Metric Spaces

2000

Tutorial 3

- 1. Sketch (where possible) the following sets A, and decide whether A is an open subset, or a closed subset, or neither, of the appropriate space \mathbb{R}^n . Then for each A, find Int(A), \overline{A} and Fr(A).
 - (*i*) $A = \bigcup_{n \in \mathbb{N}} (n, n+1)$ (where $\mathbb{N} = \{0, 1, 2, ... \}$).
 - (*ii*) $A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 x_2 = 0 \}.$
 - (*iii*) $A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 \in \mathbb{Q} \}$ (where \mathbb{Q} is the set of rational numbers).
 - (*iv*) $A = \{ (x_1, 0) \in \mathbb{R}^2 \mid 0 < x_1 < 4 \}.$

Solution.

(i) The set A is the positive half of the real line with the integers removed:

_						
0	1	2	3	4	5	

Since each open interval (n, n + 1) is open, the set A is a union of open sets, and hence open. (Note that in \mathbb{R}^1 with the usual metric, the open interval (a, b) equals the open ball centred at (a + b)/2 with radius (b - a)/2.) Since A is open, Int(A) = A. The closure \overline{A} is the set of all nonnegative real numbers (since every open interval centred at a positive real number contains a point in an interval (n, n + 1) for some n), and

$$\operatorname{Fr}(A) = \overline{A} \setminus \operatorname{Int}(A) = \{0, 1, 2, \dots\} = \mathbb{N}.$$

(*ii*) This time A is the set of points which lie on one or other of the coordinate axes. Any circle whose centre is on one of the axes will contain a point not on either axis; so A has no interior points. That is, $Int(A) = \emptyset$. On the other hand, the complement of A is open: if $(x, y) \in \mathbb{R}^2 \setminus A$ then $x \neq 0$ and $y \neq 0$, and and

the open disc with centre (x, y) and radius $\min(|x|, |y|)$ contains no point on either axis (so that $(x, y) \in \operatorname{Int}(\mathbb{R}^2 \setminus A)$). So A is closed; so $\overline{A} = A$. And $\operatorname{Fr}(A) = \overline{A} \setminus \operatorname{Int}(A) = A$.

- (*iii*) I can't draw this set (points whose x-coordinate is rational). It is easily seen that every circle in the plane contains points with rational x-coordinate and points with irrational x-coordinate. So all points of \mathbb{R}^2 are in \overline{A} and no points are in Int(A). So $Int(A) = \emptyset$ and $\overline{A} = \mathbb{R}^2 = Fr(A)$. +
- (iv) A is the line segment from (0,0) to (4,0): (The endpoints (0,0) and (4,0) themselves are excluded.) No circle in the plane is composed entirely of points on this line segment; so $\operatorname{Int}(A) = \emptyset$. The points (0,0) and (4,0) are in \overline{A} since any circle centred at either of these points will include points of the line segment A. For every other point $(x,y) \in \mathbb{R}^2$ which is not in A one can find a circle with centre (x,y) and radius small enough that it does not contain any point on the line segment. Specifically, if $y \neq 0$ we can choose the radius to be |y|/2, and if y = 0 then x > 4 or x < 0, and we can take the radius to be either $\frac{x-4}{2}$ or $\frac{-x}{2}$ (whichever is positive). So such points (x, y) are not in \overline{A} . So \overline{A} is the line segment from (0,0) to (0,4) including the endpoints. And since $\operatorname{Int}(A)$ is empty, $\operatorname{Fr}(A) = \overline{A}$.
- **2.** Let A be an open subset of a metric space (X, d) and $a \in A$. Is $A \setminus \{a\}$ open in X?

Solution.

Yes. Note first that $X \setminus \{a\}$ is open, for if $x \in X \setminus \{a\}$ is arbitrary then $B_d(x, \frac{1}{2}d(a, x))$ is contained in $X \setminus \{a\}$ (since $a \notin B_d(x, \frac{1}{2}d(a, x))$). Since $A \setminus \{a\} = A \cap (X \setminus \{a\})$, and the intersection of two open sets is always open, the result follows.

3. Let (X, d) be a metric space, and A, B subsets of X with $A \subseteq B$. Prove that $Int(A) \subseteq Int(B)$.

Solution.

Let $x \in \text{Int}(A)$ be arbitrary. Then there exists $\varepsilon > 0$ with $B_d(x, \varepsilon) \subseteq A$. Since $A \subseteq B$ it follows that $B_d(x, \varepsilon) \subseteq B$. So $x \in \text{Int}(B)$. This holds for all $x \in \text{Int}(A)$; so $\text{Int}(A) \subseteq \text{Int}(B)$. **4.** Let (X, d) be a metric space and $A \subseteq X$. Let x be a limit point of A. Prove that every open ball with centre x contains an infinite number of points of A, and use this to show that $(A')' \subseteq A'$.

Solution.

Let x be a limit point (accumulation point) of A, and let $B = B_d(x, t)$ be an open ball with centre x. Suppose that B does not contain an infinite number of points of A. Since x is an accumulation point of Athere is at least one point of A in $B \setminus \{x\}$; our assumption says that there are only finitely many such points. So let a_1, a_2, \ldots, a_k be all the points of $(B \setminus \{x\}) \cap A$. Since $a_i \neq x$ for each *i*, each distance $d(a_i, x)$ is positive. Put $s = \min_i (d(a_i, x))$, the smallest of these k positive numbers. Then $d(a_i, x) \geq s$ for each *i*, and so $a_i \notin B_d(x, s)$ for each *i*. But since x is an accumulation point of A there is a point $a \in (B_d(x,s) \setminus \{x\}) \cap A$. Now $0 < d(a,x) < s \le d(a_1,x) < t$ (since $a_1 \in B_d(x,t)$, and it follows that $a \in (B_d(x,t) \setminus \{x\}) \cap A$. But since $a \neq a_i$ for each *i* (since $d(x, a) < d(x, a_i)$) this contradicts the fact that a_1, a_2, \ldots, a_k are all the points of $(B_d(x, t) \setminus \{x\}) \cap A$. This contradiction shows that our original assumption that B does not contain infinitely many points of A is false. Since B was an arbitrary open ball centred at x, we have shown that every such ball contains infinitely many points of A.

Let $x \in (A')'$, and let B be an open ball with centre x. Then B contains at least one point of A'; so choose $b \in B \cap A'$. Since $b \in B$ and B is open there exists an open ball B_1 with centre at b and $B_1 \subseteq B$. Since $b \in A'$, every open ball centred at b contains infinitely many points of A. In particular, B_1 contains infinitely many points of A, and since $B_1 \subseteq B$ it follows that B contains infinitely many points of A. So Bcontains at least one point of A different from x. This holds for all open balls containing x; so x is an accumulation point of A. Thus we have shown that every point of (A')' is in A'; that is, $(A')' \subseteq A'$, as required.

- 5. Let (X, d) be a metric space.
 - (i) If $A \subseteq B \subseteq X$, prove that $A' \subseteq B'$.
 - (*ii*) If A and B are subsets of X, prove that $(A \cup B)' = A' \cup B'$.

Solution.

- (i) Suppose that $A \subseteq B \subseteq X$, and let x be an arbitrary point of A'.
- Let U be an open neighbourhood of x. Then $(U \setminus \{x\}) \cap A \neq \emptyset$.

4

But since $A \subseteq B$ it follows that $(U \setminus \{x\}) \cap A \subseteq (U \setminus \{x\}) \cap B$. So $(U \setminus \{x\}) \cap B \neq \emptyset$. This holds for all open sets U with $x \in U$; so $x \in B'$. This is true for all $x \in A'$; so $A' \subseteq B'$.

(*ii*) Since $A \subseteq (A \cup B)$, it follows from (*i*) that $A' \subseteq (A \cup B)'$, and equally $B' \subseteq (A \cup B)'$. So $A' \cup B' \subseteq (A \cup B)'$.

Our strategy now is to show that points which are not in A' and not in B' are not in $(A \cup B)'$ (since this implies that if $x \in (A \cup B)'$ then either $x \in A'$ or $x \in B'$; that is, $(A \cup B)' \subseteq A' \cup B'$.) To say that $x \in A'$ is to say that for every open neighbourhood U of x the set $A \cap U \setminus \{x\}$ is nonempty. So to say that $x \notin A'$ is to say that there exists an open set U containing x such that $A \cap U \setminus \{x\} = \emptyset$. Similarly, if $x \notin B'$ then there is an open set V with $x \in V$ and $B \cap V \setminus \{x\} = \emptyset$. Choose such a U and such a V. Then $U \cap V$ is open and $x \in U \cap V$. Moreover,

$(A \cup B) \cap (U \cap V) \setminus \{x\} = (A \cap (U \cap V) \setminus \{x\}) \cup (B \cap (U \cap V) \setminus \{x\})$ $\subseteq (A \cap U \setminus \{x\}) \cup (B \cap V) \setminus \{x\}) = \emptyset.$

So $U \cap V$ is an open neighbourhood of x containing no points of $A \cup B$ different from x. So $x \notin (A \cup B)'$.

- **6.** Let (X, d) be a metric space and A, B be two subsets of X. Prove that:
 - (i) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
 - $(ii) \quad \overline{A \cup B} = \overline{A} \cup \overline{B}.$
 - $(iii) \ \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}.$

Show that equality need not hold in Part (*iii*).

Solution.

- (i) Recall from lectures that the closure of a set S is a closed set containing S and contained in all the closed sets containing S. Now suppose that $A \subseteq B$. Since $B \subseteq \overline{B}$ we have $A \subseteq \overline{B}$. Since \overline{B} is closed and contains A, it contains \overline{A} , as required.
- (*ii*) We have $A \subseteq \overline{A} \subseteq \overline{A} \cup \overline{B}$ and $B \subseteq \overline{B} \subseteq \overline{A} \cup \overline{B}$. So $A \cup B \subseteq \overline{A} \cup \overline{B}$. Since the union of two closed sets is always closed, $\overline{A} \cup \overline{B}$ is closed. Since it contains $A \cup B$ it must contain the closure of $A \cup B$. So $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.

By the first part and the fact that $A \subseteq A \cup B$ it follows that $\overline{A} \subseteq \overline{A \cup B}$. Similarly, since $B \subseteq A \cup B$ we find that $\overline{B} \subseteq \overline{A \cup B}$.

So $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. Since the reverse inclusion was proved above, $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

(*iii*) By Part (*i*) and $A \cap B \subseteq A$ we have $\overline{A \cap B} \subseteq \overline{A}$; similarly $A \cap B \subseteq B$ gives $\overline{A \cap B} \subseteq \overline{B}$. So $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

Let $X = \mathbb{R}$ with the usual metric. Let A be the open half-line $(0, \infty)$ and B the open half-line $(-\infty, 0)$. Then $A \cap B = \emptyset$, and so $\overline{A \cap B} = \emptyset$. But $\overline{A} = [0, \infty)$ and $\overline{B} = (-\infty, 0]$; so $\overline{A} \cap \overline{B} = \{0\} \neq \overline{A \cap B}$.

7. Let $A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1, x_2 \in \mathbb{Q} \}$ (where \mathbb{Q} is the set of all rational numbers). Show that $\overline{A} = \mathbb{R}^2$. Deduce that \mathbb{R}^2 is separable.

Solution.

A countable union of finite sets is countable: if A_1, A_2, A_3, \ldots are finite sets then we can list all the elements of $\bigcup_{i=1}^{\infty} A_i$ by listing the elements of A_1 first, then the elements of A_2 , then A_3 , and so on. It follows that the set $\mathbb{Z}^+ \times \mathbb{Z}^+ = \{ (m, n) \mid m, n \in \mathbb{Z}^+ \}$ is countable: it equals $\bigcup_{i=2}^{\infty} A_i$, where $A_i = \{ (m, n) \mid m, n \in \mathbb{Z}^+ \text{ and } m + n = i \}$, a finite set (for each $i \geq 2$). Since $(m, n) \mapsto m/n$ is a surjective map from $\mathbb{Z}^+ \times \mathbb{Z}^+$ to \mathbb{Q}^+ , the set of positive rational numbers, it follows that \mathbb{Q}^+ is countable. So \mathbb{Q} is countable, since we can list the elements of \mathbb{Q} in the order $q_1, -q_1, q_2, -q_2, \ldots$, where q_i is the *i*-th term in a listing ogf the elements of \mathbb{Q}^+ . So we obtain a one to one correspondence between $\mathbb{Z}^+ \times \mathbb{Z}^+$ and $\mathbb{Q} \times \mathbb{Q}$. But $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable; so $\mathbb{Q} \times \mathbb{Q}$ is countable. That is, A is countable.

Let $(x, y) \in \mathbb{R}^2$, and let $\varepsilon > 0$ Choose a positive integer k with $10^{-k} < \varepsilon/\sqrt{2}$, and let X be the integer part of $10^k x$ and Y the integer part of $10^k y$. (That is, $X \in \mathbb{Z}$ satisfies $X \leq 10^k x < X + 1$, and similarly for Y.) Then $(10^{-k}X, 10^{-k}Y) \in A$, and

$$d((10^{-k}X, 10^{-k}Y), (x, y)) = \sqrt{|10^{-k}X - x|^2 + |10^{-k}Y - y|^2}$$
$$= 10^{-k}\sqrt{|X - 10^k x|^2 + |Y - 10^k y|^2}$$
$$< 10^{-k}\sqrt{2} < \varepsilon.$$

Thus $B((x, y), \varepsilon)$ contains a point of A, and since this holds for all $\varepsilon > 0$ it follows that $(x, y) \in \overline{A}$. But (x, y) was an arbitrary point of \mathbb{R}^2 ; so $\overline{A} = \mathbb{R}^2$. In other words, A is dense in \mathbb{R}^2 . So \mathbb{R}^2 has a countable dense subset (and this is what separable means).

8. Let (Y, d_Y) a metric subspace of a metric space (X, d) and $H \subseteq Y$. Prove that H is closed in Y if and only if there exists a closed subset C in X such that $H = C \cap Y$.

Solution.

Let us prove first that a subset J of Y is open in Y if and only if there is an open subset U of X such that $J = U \cap Y$. For $a \in Y$ and $\varepsilon > 0$ let us write $B_Y(a,\varepsilon) = \{y \in Y \mid d_Y(a,y) < \varepsilon\}$, and observe that $B_Y(a,\varepsilon) = Y \cap B_X(a,\varepsilon)$, where $B_X(a,\varepsilon) = \{x \in X \mid d(a,x) < \varepsilon\}$. Suppose first that $J = U \cap Y$, where U is open in X. Let $a \in J$. Then $a \in U$, and so there is an $\varepsilon > 0$ such that $B_X(a,\varepsilon) \subset U$. So

$$B_Y(a,\varepsilon) = Y \cap B_X(a,\varepsilon) \subseteq Y \cap U = J.$$

This shows that a is an interior point of J in the metric space Y, and since a was an arbitrary point of J it follows that J is open in Y.

Conversely, suppose that J is open in Y. Then every point of J is contained in an open ball contained in J. So J is the union of the sets in the collection $S = \{B_Y(a,\varepsilon) \mid B_Y(a,\varepsilon) \subseteq J\}$. Now let $\mathcal{T} = \{B_X(a,\varepsilon) \mid B_Y(a,\varepsilon) \in S\}$, and let U be the union of all the sets in the collection \mathcal{T} . Then U is open, since it is a union of open balls. And

$$Y \cap U = Y \cap \bigcup_{B \in \mathcal{T}} B = \bigcup_{B \in \mathcal{T}} (Y \cap B) = \bigcup_{D \in \mathcal{S}} D = J$$

since the sets in the collection S are precisely the intersections with Y of the sets in T. So J is the intersection with Y of an open subset of X.

Observe that $Y \cap C = H$ if and only if $Y \cap (X \setminus C) = Y \setminus H$. Since H is closed in Y if and only if $Y \setminus H$ is open in Y, and C is closed in X if and only if $X \setminus C$ is open in X, the result follows. (If $H = Y \cap C$ with C closed, then $Y \setminus H = Y \cap (X \setminus C)$ is open since $X \setminus C$ is open; so H is closed. Conversely, if H is closed we can find an open U with $Y \cap U = Y \setminus H$, and then $H = Y \cap C$ where $C = X \setminus U$.)

9. Let $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, the set of all positive integers, considered as a subspace of the metric space (\mathbb{R}, d) (where d is the usual metric). Describe the open sets of \mathbb{Z}^+ .

Solution.

With this metric, all subsets of \mathbb{Z}^+ are open. If $n \in \mathbb{Z}^+$ then the open ball with radius 1/2 centred at n contains n and no other element of \mathbb{Z}^+ . So $\{n\}$ is an open set in \mathbb{Z}^+ . Since every subset of \mathbb{Z}^+ is a union of sets of this form, all subsets of \mathbb{Z}^+ are open.