Metric Spaces

2000

Tutorial 4

1. If a sequence $(x_n)_{n=1}^{\infty}$ in a metric space X is convergent and has limit x, show that every subsequence $(x_{n_k})_{k=1}^{\infty}$ of (x_n) is convergent and has the same limit x.

Solution.

Let $\varepsilon > 0$. Since $x_n \to x$ as $n \to \infty$, there is N such that $d(x_n, x) < \varepsilon$ for all n > N. By the definition of the concept of a subsequence, $(n_k)_{k=1}^{\infty}$ is a strictly increasing sequence of positive integers. (That is, $n_1 < n_2 < n_3 < \cdots$.) So there exists K such that $n_k > N$ for all k > K. Thus $d(x_{n_k}, x) < \varepsilon$ for all k > K. As ε was arbitrary, this shows that $\lim_{k \to \infty} x_{n_k} = x$.

Alternatively, if one is prepared to use the corresponding result for sequences of numbers, which is presumably covered in any course on sequences and series, one can argue as follows. Since $x_n \to x$ as $n \to \infty$ it follows that $d(x_n, x) \to 0$ as $n \to \infty$. Since $(x_{n_k})_{k=1}^{\infty}$ is a subsequence of $(x_n)_{n=1}^{\infty}$, so also $(d(x_{n_k}, x))_{k=1}^{\infty}$ is a subsequence of $(d(x_n, x))_{n=1}^{\infty}$. Any subsequence of a convergent sequence of real numbers converges to the same limit as the sequence itself; so $d(x_{n_k}, x) \to 0$ as $k \to \infty$. That is, $x_{n_k} \to x$ as $k \to \infty$.

2. Recall that ℓ^{∞} is the metric space of all bounded sequences in \mathbb{R} , with metric d given by

$$d(x,y) = \sup_{k \in \mathbb{N}} |x_k - y_k|.$$

Let M be the subset consisting of all sequences $x = (x_k)$ with at most finitely many nonzero terms. Show that M is not closed. [Hint: Try to produce a sequence in M converging to a point not in M.]

Solution.

For
$$n = 1, 2, ..., let x_n$$
 be the sequence $(x_{n,i})_{i=1}^{\infty}$ defined by

$$x_{n,i} = \begin{cases} 1/i & \text{if } 1 \le i \le n \\ 0 & \text{if } i > n. \end{cases}$$

That is, $x_n = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots))$. Then (x_n) is a sequence in M. Let x be the sequence whose *i*-th term is 1/i, for all i. That is, $x = (1, \frac{1}{2}, \frac{1}{3}, \dots,)$. Then $x \in \ell^{\infty}$ but $x \notin M$. Moreover, for all $n \in \mathbb{Z}^+$,

$$d(x^{(n)}, x) = \sup\{\frac{1}{n+1}, \frac{1}{n+2}, \frac{1}{n+3}, \dots\} = \frac{1}{n+1}$$

Thus $d(x_n, x) \to 0$ as $n \to \infty$, which means that $(x^{(n)}) \to x$ as $n \to \infty$. Hence x is in the closure of M, since it is the limit of a sequence in M. Since $x \notin M$ it follows that M is not equal to its closure; that is, M is not closed.

3. Let $X = \mathcal{C}[0, 1]$, the set of continuous functions on [0, 1], and let d be the metric on X defined by

$$d(f,g) = \int_0^1 |f(x) - g(x)| \, dx.$$

For each $n \in \mathbb{Z}^+$ define $f_n \in X$ by $f_n(x) = x^n$ for all $x \in [0, 1]$.

- (i) Show that the sequence $(f_n)_{n=1}^{\infty}$ converges in X, and find its limit f.
- (*ii*) Show that the function f in Part (*i*) is not the pointwise limit of the sequence (f_n) .

[Hint: f is the continuous function which agrees with the pointwise limit for almost all $x \in [0, 1]$.]

Solution.

(i) Let f be the zero function, f(x) = 0 for all $x \in [0, 1]$. Then $f \in X$, and for all $n \in \mathbb{Z}^+$

$$d(f_n, f) = \int_0^1 |f_n(x) - f(x)| \, dx = \int_0^1 x^n \, dx = 1/(n+1),$$

which tends to 0 as $n \to \infty$. So (f_n) converges to f.

(ii) It is not true that $\lim_{n \to \infty} f_n(x) = f(x)$ holds for all $x \in [0, 1]$, since $f_n(1) = 1^n = 1$ for all $n \in \mathbb{Z}^+$, giving $f_n(1) \to 1$ as $n \to \infty$, whereas f(1) = 0. So f is not the pointwise limit of f_n .

3

4. Let d be the metric on $X = \mathcal{C}[a, b]$ defined by

$$d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|.$$

Let $(f_n)_{n=1}^{\infty}$ be a sequence in $\mathcal{C}[a, b]$, and suppose that (f_n) converges uniformly on [a, b] to some function f. Prove that f is continuous on [a, b], and hence show that (f_n) converges in (X, d).

Solution.

We must show that f is continuous at each x_0 in [a, b]. So we must show that for each $\varepsilon > 0$ there is a $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ whenever x satisfies $|x - x_0| < \delta$.

Let $\varepsilon > 0$. Since $f_n \to f$, there is N such that $d(f_n, f) < \varepsilon/3$ for all $n \ge N$. For all $x \in [0, 1]$,

$$|f_n(x) - f(x)| \le \sup_{t \in [0,1]} |f_n(t) - f(t)| = d(f_n, f);$$

so $|f_n(x) - f(x)| < \varepsilon/3$ for all $n \ge N$ and all $x \in [a, b]$. Now since f_N is continuous at x_0 , there exists $\delta > 0$ such that $|f_N(x) - f_N(x_0)| < \varepsilon/3$ whenever $|x - x_0| < \delta$. Hence if x satisfies $|x - x_0| < \delta$, then

$$\begin{aligned} |f(x) - f(x_0)| &< |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{aligned}$$

Hence f is continuous on [a, b].

5. Let (X, d) be as in Question 4, and suppose that (f_n) is a convergent sequence in this space with limit f. (In other words, (f_n) converges to f uniformly on [a, b].)

Prove that
$$\int_{a}^{b} f_{n}(x) dx \longrightarrow \int_{a}^{b} f(x) dx$$
 as $n \to \infty$.

Solution.

Let $n \in \mathbb{Z}^+$. Since

$$-|f_n(x) - f(x)| \le f_n(x) - f(x) \le |f_n(x) - f(x)|$$

for all $x \in [a, b]$, it follows that

$$-\int_{a}^{b} |f_{n}(x) - f(x)| \, dx \le \int_{a}^{b} f_{n}(x) - f(x) \, dx \le \int_{a}^{b} |f_{n}(x) - f(x)| \, dx,$$

and therefore

$$\left| \int_{a}^{b} f_{n}(x) \, dx - \int_{a}^{b} f(x) \, dx \right| = \left| \int_{a}^{b} f_{n}(x) - f(x) \, dx \right| \le \int_{a}^{b} |f_{n}(x) - f(x)| \, dx$$

Note that for all $x \in [a, b]$,

$$|f_n(x) - f(x)| \le \sup_{t \in [0,1]} |f_n(t) - f(t)| = d(f_n, f).$$

So we have

$$\left| \int_{a}^{b} f_{n}(x) \, dx - \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| \, dx$$
$$\leq \int_{a}^{b} d(f_{n}, f) \, dx$$
$$\leq (b - a) d(f_{n}, f)$$
$$\longrightarrow 0 \qquad \text{as } n \to \infty.$$

Hence $\int_{a}^{b} f_{n}(x) dx \to \int_{a}^{b} f(x) dx$ as $n \to \infty$.