The University of Sydney Pure Mathematics 3901

## Tutorial 4

1. If a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in a metric space $X$ is convergent and has limit $x$, show that every subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ of $\left(x_{n}\right)$ is convergent and has the same limit $x$.

## Solution.

Let $\varepsilon>0$. Since $x_{n} \rightarrow x$ as $n \rightarrow \infty$, there is $N$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>N$. By the definition of the concept of a subsequence, $\left(n_{k}\right)_{k=1}^{\infty}$ is a strictly increasing sequence of positive integers. (That is, $n_{1}<n_{2}<n_{3}<\cdots$.) So there exists $K$ such that $n_{k}>N$ for all $k>K$. Thus $d\left(x_{n_{k}}, x\right)<\varepsilon$ for all $k>K$. As $\varepsilon$ was arbitrary, this shows that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$
Alternatively, if one is prepared to use the corresponding result for sequences of numbers, which is presumably covered in any course on sequences and series, one can argue as follows. Since $x_{n} \rightarrow x$ as $n \rightarrow \infty$ it follows that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ is a subsequence of $\left(x_{n}\right)_{n=1}^{\infty}$, so also $\left(d\left(x_{n_{k}}, x\right)\right)_{k=1}^{\infty}$ is a subsequence of $\left(d\left(x_{n}, x\right)\right)_{n=1}^{\infty}$. Any subsequence of a convergent sequence of real numbers converges to the same limit as the sequence itself; so $d\left(x_{n_{k}}, x\right) \rightarrow 0$ as $k \rightarrow \infty$. That is, $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$.
2. Recall that $\ell^{\infty}$ is the metric space of all bounded sequences in $\mathbb{R}$, with metric $d$ given by

$$
d(x, y)=\sup _{k \in \mathbb{N}}\left|x_{k}-y_{k}\right| .
$$

Let $M$ be the subset consisting of all sequences $x=\left(x_{k}\right)$ with at most finitely many nonzero terms. Show that $M$ is not closed. [Hint: Try to produce a sequence in $M$ converging to a point not in M.]

## Solution.

For $n=1,2, \ldots$, let $x_{n}$ be the sequence $\left(x_{n, i}\right)_{i=1}^{\infty}$ defined by

$$
x_{n, i}= \begin{cases}1 / i & \text { if } 1 \leq i \leq n \\ 0 & \text { if } i>n .\end{cases}
$$

That is, $\left.x_{n}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0,0, \ldots\right)\right)$. Then $\left(x_{n}\right)$ is a sequence in $M$. Let $x$ be the sequence whose $i$-th term is $1 / i$, for all $i$. That is, $x=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots,\right)$. Then $x \in \ell^{\infty}$ but $x \notin M$. Moreover, for all $n \in \mathbb{Z}^{+}$,

$$
d\left(x^{(n)}, x\right)=\sup \left\{\frac{1}{n+1}, \frac{1}{n+2}, \frac{1}{n+3}, \ldots\right\}=\frac{1}{n+1}
$$

Thus $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, which means that $\left(x^{(n)}\right) \rightarrow x$ as $n \rightarrow \infty$. Hence $x$ is in the closure of $M$, since it is the limit of a sequence in $M$. Since $x \notin M$ it follows that $M$ is not equal to its closure; that is, $M$ is not closed.
3. Let $X=\mathcal{C}[0,1]$, the set of continuous functions on $[0,1]$, and let $d$ be the metric on $X$ defined by

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

For each $n \in \mathbb{Z}^{+}$define $f_{n} \in X$ by $f_{n}(x)=x^{n}$ for all $x \in[0,1]$.
(i) Show that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges in $X$, and find its limit $f$.
(ii) Show that the function $f$ in Part $(i)$ is not the pointwise limit of the sequence $\left(f_{n}\right)$.
[Hint: $f$ is the continuous function which agrees with the pointwise limit for almost all $x \in[0,1]$.]

## Solution.

(i) Let $f$ be the zero function, $f(x)=0$ for all $x \in[0,1]$. Then $f \in X$, and for all $n \in \mathbb{Z}^{+}$

$$
d\left(f_{n}, f\right)=\int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=\int_{0}^{1} x^{n} d x=1 /(n+1)
$$

which tends to 0 as $n \rightarrow \infty$. So $\left(f_{n}\right)$ converges to $f$.
(ii) It is not true that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ holds for all $x \in[0,1]$, since $f_{n}(1)=1^{n}=1$ for all $n \in \mathbb{Z}^{+}$, giving $f_{n}(1) \rightarrow 1$ as $n \rightarrow \infty$, whereas $f(1)=0$. So $f$ is not the pointwise limit of $f_{n}$.
4. Let $d$ be the metric on $X=\mathcal{C}[a, b]$ defined by

$$
d(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)| .
$$

Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $\mathcal{C}[a, b]$, and suppose that $\left(f_{n}\right)$ converges uniformly on $[a, b]$ to some function $f$. Prove that $f$ is continuous on $[a, b]$, and hence show that $\left(f_{n}\right)$ converges in $(X, d)$.
Solution.
We must show that $f$ is continuous at each $x_{0}$ in $[a, b]$. So we must show that for each $\varepsilon>0$ there is a $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ whenever $x$ satisfies $\left|x-x_{0}\right|<\delta$.
Let $\varepsilon>0$. Since $f_{n} \rightarrow f$, there is $N$ such that $d\left(f_{n}, f\right)<\varepsilon / 3$ for all $n \geq N$. For all $x \in[0,1]$,

$$
\left|f_{n}(x)-f(x)\right| \leq \sup _{t \in[0,1]}\left|f_{n}(t)-f(t)\right|=d\left(f_{n}, f\right)
$$

so $\left|f_{n}(x)-f(x)\right|<\varepsilon / 3$ for all $n \geq N$ and all $x \in[a, b]$. Now since $f_{N}$ is continuous at $x_{0}$, there exists $\delta>0$ such that $\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|<\varepsilon / 3$ whenever $\left|x-x_{0}\right|<\delta$. Hence if $x$ satisfies $\left|x-x_{0}\right|<\delta$, then

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)\right| & <\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|+\left|f_{N}\left(x_{0}\right)-f\left(x_{0}\right)\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

Hence $f$ is continuous on $[a, b]$.
5. Let $(X, d)$ be as in Question 4, and suppose that $\left(f_{n}\right)$ is a convergent sequence in this space with limit $f$. (In other words, $\left(f_{n}\right)$ converges to $f$ uniformly on $[a, b]$.)
Prove that $\int_{a}^{b} f_{n}(x) d x \longrightarrow \int_{a}^{b} f(x) d x \quad$ as $n \rightarrow \infty$.
Solution.

$$
\begin{aligned}
& \text { Let } n \in \mathbb{Z}^{+} \text {. Since } \\
& \qquad-\left|f_{n}(x)-f(x)\right| \leq f_{n}(x)-f(x) \leq\left|f_{n}(x)-f(x)\right|
\end{aligned}
$$

for all $x \in[a, b]$, it follows that

$$
-\int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x \leq \int_{a}^{b} f_{n}(x)-f(x) d x \leq \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x
$$

and therefore

$$
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right|=\left|\int_{a}^{b} f_{n}(x)-f(x) d x\right| \leq \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x
$$

Note that for all $x \in[a, b]$,

$$
\left|f_{n}(x)-f(x)\right| \leq \sup _{t \in[0,1]}\left|f_{n}(t)-f(t)\right|=d\left(f_{n}, f\right)
$$

So we have

$$
\begin{aligned}
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right| & \leq \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x \\
& \leq \int_{a}^{b} d\left(f_{n}, f\right) d x \\
& \leq(b-a) d\left(f_{n}, f\right) \\
& \longrightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence $\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x$ as $n \rightarrow \infty$.

