The University of Sydney
Pure Mathematics 3901

Tutorial 5

1. Let $X=(X, d)$ be a metric space. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequences in X such that $\left(y_{n}\right)$ is a Cauchy sequence and $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Prove that
(i) $\quad\left(x_{n}\right)$ is a Cauchy sequence in X, and
(ii) $\left(x_{n}\right)$ converges to a limit x if and only if $\left(y_{n}\right)$ also converges to x.

Solution.

(i) Let $\varepsilon>0$. Since $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, there is N_{1} such that $d\left(x_{k}, y_{k}\right)<\varepsilon / 3$ for all $k>N_{1}$. Since $\left(y_{n}\right)$ is a Cauchy sequence, there is N_{2} such that $d\left(y_{m}, y_{n}\right)<\varepsilon / 3$ for all $m, n>N_{2}$. Put $N=\max \left\{N_{1}, N_{2}\right\}$. Then, by the triangle inequality, for all $m, n>N$ we have

$$
d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)+d\left(y_{n}, x_{n}\right)<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
$$

Hence $\left(x_{n}\right)$ is a Cauchy sequence.
(ii) Suppose that (y_{n}) converges to x. Then $d\left(y_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. Now by the triangle inequality,

$$
0 \leq d\left(x_{n}, x\right) \leq d\left(x_{n}, y_{n}\right)+d\left(y_{n}, x\right) \longrightarrow 0+0=0
$$

as $n \rightarrow \infty$; so $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. So $\left(x_{n}\right)$ converges to x. Similarly, if $\left(x_{n}\right)$ converges to x then $0 \leq d\left(y_{n}, x\right) \leq d\left(y_{n}, x_{n}\right)+d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, whence $\left(y_{n}\right)$ converges to x also.
2. Prove that every Cauchy sequence in a metric space (X, d) is bounded.

Solution.

(This was proved in lectures). Let $\left(x_{n}\right)$ be a Cauchy sequence of (X, d). By the definition of Cauchy sequence, applied with $\varepsilon=1$, there exists N such that $d\left(x_{m}, x_{n}\right)<1$ for all $m, n \geq N$; so $x_{n} \in B\left(x_{N}, 1\right)$ for all $n \geq N$. Now define $r=1+\max \left\{1, d\left(x_{1}, x_{N}\right), d\left(x_{2}, x_{N}\right), \ldots, d\left(x_{N-1}, x_{N}\right)\right\}$. We see that $x_{n} \in B\left(x_{N} ; r\right)$ for all n; so $\left(x_{n}\right)$ is bounded.
3. Show that the set X of all integers, with metric d defined by $d(m, n)=|m-n|$, is a complete metric space.

Solution.

Note that d is the metric induced by the Euclidean metric (the usual metric) on \mathbb{R}. Since closed subspaces of complete spaces are complete, it suffices to
show that \mathbb{Z} is closed in \mathbb{R}. The complement of \mathbb{Z} in \mathbb{R} is the union of all the open intervals ($n, n+1$), where n runs through all of \mathbb{Z}, and this is open since every union of open sets is open. So \mathbb{Z} is closed.
Alternatively, let $\left(a_{n}\right)$ be a Cauchy sequence in \mathbb{Z}. Choose an integer N such that $d\left(x_{n}, x_{m}\right)<1$ for all $n \geq N$. Put $x=x_{N}$. Then for all $n \geq N$ we have $\left|x_{n}-x\right|=d\left(x_{n}, x_{N}\right)<1$. But $x_{n}, x \in \mathbb{Z}$, and since two distinct integers always differ by at least 1 it follows that $x_{n}=x$. This holds for all $n>N$. So $x_{n} \rightarrow x$ as $n \rightarrow \infty$ (since for all $\varepsilon>0$ we have $0=d\left(x_{n}, x\right)<\varepsilon$ for all $n>N)$.
4. (i) Show that if D is a metric on the set X and $f: Y \rightarrow X$ is an injective function then the formula $d(a, b)=D(f(a), f(b))$ defines a metric d on Y, and use this to show that $d(m, n)=\left|m^{-1}-n^{-1}\right|$ defines a metric on the set \mathbb{Z}^{+}of all positive integers.
(ii) Show that $\left(\mathbb{Z}^{+}, d\right)$, where d is as defined in Part (i), is not a complete metric space.

Solution.

(i) This is obvious, since we can regard f as identifying Y with X. Nevertheless, let us write out the details. If $a, b, c \in Y$, then $f(a), f(b), f(c) \in X$. Since D is a metric on X, we have

$$
D(f(b), f(c)) \leq D(f(a), f(b))+D(f(a), f(c))
$$

and

$$
D(f(a), f(b)=D(f(b), f(a)) \geq 0 \quad \text { with equality only if } f(a)=f(b)
$$

Thus for all $a, b, c \in Y$,
$d(b, c)=D(f(b), f(c)) \leq D(f(a), f(b))+D(f(a), f(c))=d(a, b)+d(a, c)$,
which shows that d satisfies the triangle inequality. Similarly, for all $a, b \in Y$

$$
d(a, b)=D(f(a), f(b)=D(f(b), f(a))=d(a, b)
$$

and

$$
d(a, b)=d(f(a), f(b)) \geq 0 \quad \text { with equality only if } f(a)=f(b)
$$

Since f is injective, $f(a)=f(b)$ if and only if $a=b$; so we deduce that $d(a, b)=d(b, a) \geq 0$ with equality only if $a=b$, as required.
The astute reader will have noticed that it was necessary only to assume that f is injective, rather than bijective.
The function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ defined by $f(n)=n^{-1}$ for all $n \in \mathbb{Z}^{+}$is certainly injective, and if we take D to be the usual metric on \mathbb{R} and apply the principle we have been discussing, we obtain that

$$
d(m, n)=D(f(m), f(n))=D\left(m^{-1}, n^{-1}\right)=\left|m^{-1}-n^{-1}\right|
$$

defines a metric on \mathbb{Z}, as claimed. (Or, observe that $n \rightarrow n^{-1}$ gives a bijection from \mathbb{Z}^{+}to $\left\{n^{-1} \mid n \in \mathbb{Z}^{+}\right\}$, which has a metric induced from the usual metric on \mathbb{R}.)
(ii) The sequence $\left(a_{n}\right)_{n=1}^{\infty}$ defined by $a_{n}=n$ is a Cauchy sequence with respect to the metric described in Part (i). To see this, let $b_{n} \in \mathbb{R}$ be defined by $b_{n}=f\left(a_{n}\right)=n^{-1}$ for all $n \in \mathbb{Z}^{+}$. Since $\left(b_{n}\right)$ is a convergent sequence in \mathbb{R} (with limit 0), it is a Cauchy sequence. Furthermore, since $d\left(a_{n}, a_{m}\right)=D\left(f\left(a_{n}\right), f\left(a_{m}\right)\right)=D\left(b_{n}, b_{m}\right)$ for all $n, m \in \mathbb{Z}^{+}$, the fact that $\left(b_{n}\right)$ is Cauchy implies that $\left(a_{n}\right)$ is Cauchy also.
Of course, a direct proof is trivial: given $\varepsilon>0$, if we define $N=1 / \varepsilon$ then it follows that $n^{-1}, m^{-1} \in(0, \varepsilon)$, and so $\left|n^{-1}-m^{-1}\right|<\varepsilon$, for all $n, m>N$.
5. Let c be the set of all sequences $x=\left(x_{k}\right)$ of complex numbers that are convergent in the usual sense, and let d be the metric on c induced from the space ℓ^{∞}. (That is, $\left.d(x, y)=\sup _{k \in \mathbb{N}}\left|x_{k}-y_{k}\right|\right)$. Show that the metric space (c, d) is complete. [Hint: Show that c is closed in ℓ^{∞}.]

Solution.

Since C is complete, a sequence in \mathbb{C} is convergent if and only if it is a Cauchy sequence. So c can be described as the set of all Cauchy sequences in \mathbb{C}. Recall that ℓ^{∞} is the set of all bounded sequences in \mathbb{C}, with the sup metric. Every Cauchy sequence is bounded; so (c, d) is indeed a subspace of ℓ^{∞}. The space ℓ^{∞} is complete, by Example 2.6 on p. 41 of Choo's notes. Since a closed subspace of a complete space is complete, it suffices to show that c is a closed subset of ℓ^{∞}. So it suffices to show that $\bar{c} \subseteq c$.
Let $x \in \bar{c}$. Then there exists a sequence $\left(x^{(k)}\right)_{k=1}^{\infty}$ of points of c converging in ℓ^{∞} to the point x. Our task is to prove that $x \in c$. Since points of ℓ^{∞} are themselves sequences, let us write $x_{i}^{(k)}$ for the i-th term of $x^{(k)}$ and x_{i} for the i-th term of x. That is,

$$
\begin{aligned}
x^{(1)} & =\left(x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}, \ldots\right), \\
x^{(2)} & =\left(x_{1}^{(2)}, x_{2}^{(2)}, x_{3}^{(2)}, \ldots\right), \\
x^{(3)} & =\left(x_{1}^{(3)}, x_{2}^{(3)}, x_{3}^{(3)}, \ldots\right), \\
\ldots & \ldots \\
x & =\left(x_{1}, x_{2}, x_{3}, \ldots\right) .
\end{aligned}
$$

We are given that each $x^{(k)}$ is a Cauchy sequence, and the aim is to prove that x is a Cauchy sequence. We are also given that $\left(x^{(k)}\right)$ converges in the ℓ^{∞} metric - that is, uniformly - to x. So our task can be restated as follows: prove that the uniform limit of a sequence of Cauchy sequences is Cauchy. This is somewhat analogous to the fact that the uniform limit of a sequence of continuous functions is continuous (cf. Q. 4 of Tutorial 4.)

Let $\varepsilon>0$. Choose $K \in \mathbb{Z}^{+}$such that $d\left(x^{(k)}, x\right)<\varepsilon / 3$ for all $k \geq K$. Choose $N \in \mathbb{Z}^{+}$such that $\left|x_{m}^{(K)}-x_{n}^{(K)}\right|<\varepsilon / 3$ for all $n, m>N$. Then for all $n, m>N$ we have

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & \leq\left|x_{m}-x_{m}^{(K)}\right|+\left|x_{m}^{(K)}-x_{n}^{(K)}\right|+\left|x_{n}^{(K)}-x_{n}\right| \\
& <\sup _{i \in \mathbb{Z}^{+}}\left|x_{m}-x_{m}^{(K)}\right|+\frac{\varepsilon}{3}+\sup _{i \in \mathbb{Z}^{+}}\left|x_{i}^{(K)}-x_{i}\right| \\
& =d\left(x, x^{(K)}\right)+\frac{\varepsilon}{3}+d\left(x^{(K)}, x\right) \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

This shows that $\left(x_{i}\right)$ is a Cauchy sequence, as required.
6. Let $X=(0,1)$ with the Euclidean metric d. Give an example of a nested sequence (A_{n}) of non-empty closed sets in X with $\operatorname{diam}\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, but $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$. (The diameter, $\operatorname{diam}(A)$, of a subset A of a metric space, is the supremum of the set $\{d(x, y) \mid x, y \in A\}$, if this set is bounded.)
Solution.
Note that $X=(0,1)$ is not complete, because it is not closed in \mathbb{R}. For example, a sequence in $(0,1)$ converging in \mathbb{R} to the point 0 will be a Cauchy sequence in $(0,1)$ with no limit in $(0,1)$.
Put $A_{n}=\left(0, \frac{1}{n}\right]$. This gives a nested sequence of subsets of X. Each $A_{n}=[0,1] \cap X$ is closed in X as $[0,1]$ is closed \mathbb{R}. (Recall that if Y is a subspace of a topological space X then the closed sets of Y are all sets of the form $Y \cap C$, where C is a closed subset of $X)$. Also $d\left(A_{n}\right)=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$. However $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$.
7. Let $X=(X, d)$ be a metric space and $\operatorname{CS}(X)$ the collection of all Cauchy sequences in X. For $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in $\operatorname{CS}(X)$, define

$$
\left(x_{n}\right) \sim\left(y_{n}\right) \quad \text { if and only if } \quad \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

Show that \sim is an equivalence relation on $\operatorname{CS}(X)$.

Solution.

If $\left(x_{n}\right)$ is any Cauchy sequence then $d\left(x_{n}, x_{n}\right)=0 \rightarrow 0$ as $n \rightarrow \infty$. So the relation is reflexive. It is symmetric, since if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences with $\left(x_{n}\right) \sim\left(y_{n}\right)$ then $d\left(y_{n}, x_{n}\right)=d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Finally, it is symmetric, since if $\left(x_{n}\right),\left(y_{n}\right)$ and $\left(z_{n}\right)$ are Cauchy sequences with $\left(x_{n}\right) \sim\left(y_{n}\right)$ and $\left(y_{n}\right) \sim\left(z_{n}\right)$ then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} d\left(y_{n}, z_{n}\right)=0$, so that by the triangle inequality

$$
0 \leq d\left(x_{n}, z_{n}\right) \leq d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right) \rightarrow 0+0=0
$$

as $n \rightarrow \infty$, giving $\lim _{n \rightarrow \infty} d\left(x_{n}, z_{n}\right)=0$ by the squeeze law.

