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1. Let A = S1 be the unit circle in R2 and B = [0, 2π) ⊆ R. Prove that the
mapping f :B → A defined by

f(x) = (cos x, sinx)

is a continuous bijection, but that f−1 is not continuous.

Solution.

The proof that f is bijective and the description of its inverse are covered in
junior and intermediate maths units which form part of the prerequisites for
Metric Spaces. Nevertheless, for completeness’ sake we provide the details.
By elementary calculus the restriction of the function cos to the interval
[0, π] is continuous and strictly decreasing, and hence determines a bijec-
tion [0, π] → [cos π, cos 0] = [−1, 1]. Let arccos be the inverse function
[−1, 1] → [0, π]. Observe that every point p on S1 has the form p = (x, y)
with x2 + y2 = 1, and since this implies that −1 ≤ x ≤ 1 we may define a
function Arg:S1 → [0, 2π) by

Arg(p) =
{

arccos(x) if p = (x, y) with y ≥ 0,
2π − arccos(x) if p = (x, y) with y < 0.

(Note that if y < 0 then x < 1; so 0 < arccos(x) ≤ π, and it follows that
2π − arccos(x) ∈ [0, 2π), as required.) We show that Arg is the inverse of f .
If 0 ≤ x ≤ π then sinx ≥ 0, and so

(Arg ◦f)(x) = Arg(cos x, sinx) = arccos(cos x) = x

(since x ∈ [0, π]). If π < x < 2π then sinx < 0, and arccos(cos x) = 2π − x
since cos x = cos(2π − x) and 2π − x ∈ [0, π]. So

(Arg ◦f)(x) = Arg(cos x, sinx) = 2π − arccos(cos x) = 2π − (2π − x) = x.

Thus Arg ◦f is the identity function on [0, 2π).
Let p = (x, y) be any point on S1, and write θ = arccos(x) ∈ [0, π], so that
cos θ = x and sin θ ≥ 0. Since p is on the unit circle, y = ±

√
1− x2 = ± sin θ.

Thus
(f ◦Arg)(p) =

{
(cos θ, sin θ) if y ≥ 0
(cos(2π − θ), sin(2π − θ)) if y < 0,

=
{

(cos θ, sin θ) if y ≥ 0
(cos θ,− sin θ) if y < 0,

= (x, y) in either case.
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So f ◦ Arg is the identity function on S1, and this completes the proof that
Arg = f−1. Since f has an inverse, it is bijective.

The function R → R× R given by x 7→ (cos x, sinx) is continuous since both
cos and sin are. Since f is obtained from this function by restricting the
domain and codomain, it follows that f is continuous.

Turning at last to the heart of the matter, we need to show that f−1 = Arg
is not continuous. So we need to find an open subset U of [0, 2π) such that
Arg−1(U) is not open in S1. Intuitively, the reason Arg is not continuous is
this: it tears the circle apart at p = (1, 0). The open set U that we seek should
therefore be a neighbourhood of Arg((1, 0)) = 0. If q = (x, y) is a point close to
(1, 0) with y < 0 then Arg(q) is close to 2π rather than 0; so we should choose
U small enough to avoid some points near 2π. Then (1, 0) will be in Arg−1(U)
but not in Int(Arg−1(U)). So let us put U = (−π, π) ∩ [0, 2π) = [0, π), which
is an open subset of [0, 2π) since (−π, π) is open in R. If q ∈ Arg−1(U) then
q = (cos θ, sin θ) for some θ ∈ [0, π), and so q = (x, y) with y ≥ 0. But for any
δ > 0 the open ball in S1 with centre (1, 0) and radius δ contains points (x, y)

with y < 0. For example, the point (x, y) = (1− δ2

8 ,− δ
2

√
(1− δ2

16 )) is in this
ball, since it satisfies x2 + y2 = 1 and d((x, y), (1, 0)) = δ/2. But it is not in
Arg−1(U); so (1, 0) is not in Int(Arg−1(U)), and so Arg−1(U) is not open.

The above perhaps makes the proof look longer than it really is; so here is a re-

formulation. Let ε = π > 0. For all δ > 0 the point q = (1− δ2

8 ,− δ
2

√
(1− δ2

16 ))
satisfies d(q, (1, 0)) < δ but d(Arg(q),Arg((1, 0))) ≥ ε. So it is not true that
for all ε > 0 there is a δ > 0 such that d(Arg(q),Arg((1, 0))) < ε whenever
d(q, (1, 0)) < δ.

2. Show that the mapping f : R → R+ defined by f(x) = ex is a homeomorphism
from R onto R+. (A homeomorphism from one topological space to another
is a bijective function f such that f and f−1 are both continuous.)

Solution.

The function g: R+ → R defined by g(x) = ln(x) is inverse to f , and both f
and g are continuous.

3. Show that the mapping f : R2 → R2 defined by

f(x1, x2) = (x2
1, x

2
2)

gives a homeomorphism from the space

A = { (x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0 }

onto A, but that it is not a homeomorphism from R2 onto A.
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Solution.

Concerning the very last part of the question, once we have established that
x 7→ f(x) gives a bijective function from A to A, we will certainly know that
it does not give a bijective function from R2 to A, since A 6= R2.
Since x2 ≥ 0 for all x ∈ R, the range of f is contained in A. So we may define
h to be the function A → A which agrees with f on A. Define g:A → A
by g(x1, x2) = (

√
x1,

√
x2). Since

√
x2 = x and (

√
x)2 = x whenever x ≥ 0,

it is clear that g and h are inverses of each other. The functions R+ → R+

given by x 7→ x2 and x 7→
√

x are certainly both continuous, and since both
projections (x1, x2) 7→ xi (for i ∈ {1, 2}) are continuous it follows that the
composites (x1, x2) 7→ xi 7→ x2

i and (x1, x2) 7→ xi 7→
√

xi are continuous
functions A → R+. So h and g are continuous functions A → A = (R+×R+),
since both have continuous components A → R+.

4. Let

A = { (x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x2
3 = 1 and (x1, x2, x3) 6= (0, 0, 1) }

Show that A is homeomorphic to R2.

Solution.

Let S2 be the unit sphere

S2 = { (x1, x2, x3) ∈ R3 | x2
1 + x2

2 + x2
3 = 1 },

and let N = (0, 0, 1) (the North Pole). Then A = S2 \ {N}. Identify R2 with
the subset { (x, y, 0) | x, y ∈ R } of R3. The bijection we shall produce from
A to R2 is the projection that maps each point P of A to that point Q of R2

such that NPQ is a straight line.
Suppose that P = (x1, x2, x3) is a point on A. Then x3 6= 1. The points
(y1, y2, y3) on the line through N and P are given parametrically by the
equations

y1 = tx1

y2 = tx2

y3 = 1 + t(x3 − 1).

and this line meets R2 at the point Q for which y3 = 0. This corresponds
to the parameter value t = 1/(1 − x3). This gives y1 = x1/(1 − x3) and
y2 = x2/(1− x3). So our projection map f :A → R2 satisfies

f(x1, x2, x3) =
(

x1

1− x3
,

x2

1− x3

)
.

On any subset of R3 which does not contain points with x3 = 1, the func-
tion defined by these formulas is continuous. (The proof of this is not the
main issue here; so we omit the details. The relevant facts are these: the
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projections (x1, x2, x3) 7→ xi are continuous; sums, differences, products and
(where defined) reciprocals of continuous real valued functions (on any space)
are continuous; composites of continous functions are continuous; and a func-
tion whose codomain is a Cartesian product X × Y is continuous if both its
components are continuous.)
Now suppose that (y1, y2) ∈ R2. The points on the line joining Q = (y1, y2, 0)
and N are given parametrically by

x1 = ty1

x2 = ty2

x3 = 1− t.

This meets the sphere when x2
1+x2

2+x2
3 = 1; that is, t2(y2

1 +y2
2)+(1−t)2 = 1,

or t(−2+ (1+ y2
1 + y2

2)t) = 0. The solution t = 0 gives the point N , and since
1 + y2

1 + y2
2 6= 0 there is always a second solution, t = 2/(1 + y2

1 + y2
2), giving

a point P on A whose coordinates are

(x1, x2, x3) =
(

2y1

1 + y2
1 + y2

2

,
2y2

1 + y2
1 + y2

2

,
y2
1 + y2

2 − 1
1 + y2

1 + y2
2

)
.

The mapping g: R2 → A given by g(y1, y2) = (x1, x2, x3) as defined by this
formula is continuous for reasons similar to those applicable to the function f
above. The construction makes it clear that f and g are inverses of each
other, but one can also directly substitute into the formulas to show that
f(g(y1, y2)) = (y1, y2) and g(f(x1, x2, x3)) = (x1, x2, x3) for all (y1, y2) ∈ R2

and (x1, x2, x3) ∈ A. Thus,

f(g(y1, y2)) = f(ty1, ty2, 1− t) where t = t = 2/(1 + y2
1 + y2

2),

=
( ty1

1− (1− t)
,

ty2

1− (1− t)

)
= (y1, y2)

and similarly

g(f(x1, x2, x3)) = g(ux1, ux2) where u = 1/(1− x3),
= (tux1, tux2, 1− t)

where we have

t = 2/(1 + (ux1)2 + (ux2)2) = 2/(1 + u2(1− x2
3) = 2

/(
1 +

1 + x3

1− x3

)
= 2(1− x3)/((1− x3) + (1 + x3)) = 1− x3.

Thus tu = 1 and 1− t = x3; so g(f(x1, x2, x3)) = (x1, x2, x3), as required.
We have now shown that f and g are both continuous and inverse to each
other; so they are homeomorphisms A → R2 and R2 → A. So A is homeo-
morphic to R2 .
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5. Let X = Rn and let d1 and d2 be the metrics on X given by

d1(x, y) =
( n∑

k=1

|xk − yk|p
)1/p

,

where p ≥ 1, and

d2(x, y) = max(|x1 − y1|, |x2 − y2|, . . . , |xn − yn|).

Prove that d1 and d2 are equivalent over X. (n.b. Metrics d1 and d2 on
the same set X are said to be equivalent if the open sets of the metric space
(X, d1) are also open sets of the metric space (X, d2), and vice versa. This is
the same as saying that the identity map from X to X is a homeomorphism
from (X, d1) to (X, d2).)

Solution.

For all x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn we have, for all
i ∈ {1, 2, . . . , n},

d1(x, y) =
( n∑

k=1

|xk − yk|p
)1/p

≥ (|xi − yi|p)1/p = |xi − yi|,

and therefore d1(x, y) ≥ maxi |xi − yi| = d2(x, y). And for all k we have
|xk − yk| ≤ d2(x, y), whence

∑n
k=1 |xk − yk|p ≤ n(d2(x, y))p, giving

d1(x, y) ≤ (n(d2(x, y))p)1/p = n1/pd2(x, y).

Thus for all ε > 0 there exists a δ > 0, namely δ = ε, such that d2(x, y) < ε
whenever d1(x, y) < δ, and for all ε > 0 there exists a δ > 0, namely δ = ε/ p

√
n,

such that d1(x, y) < ε whenever d2(x, y) < δ. This shows that the identity
function from R with the metric d1 to R with the metric d2 is uniformly
continuous, and so is the identity function from R with d2 to R with d1. In
particular, these identity functions are continuous, and so the metrics are
equivalent.

6. Let (X, d) be any metric space. Let d1 and d2 be the metrics on X defined by

d1(x, y) = min(1, d(x, y)),

and
d2(x, y) =

d(x, y)
1 + d(x, y)

.

Prove that d, d1 and d2 are all equivalent on X.

Solution.

Clearly d1(x, y) ≤ d(x, y) for all x, y ∈ X; so the identity mapping from
(X, d) to (X, d1) is (uniformly) continuous. Observe also that for all a ∈ R+
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we have both a/(1 + a) < (1 + a)/(1 + a) = 1 and a/(1 + a) < a/1 = a; so
a/(1 + a) < min(1, a), and it follows that

d2(x, y) =
d(x, y)

1 + d(x, y)
< min(1, d(x, y)) = d1(x, y)

for all x, y ∈ X. So the identity mapping from (X, d1) to (X, d2) is also
(uniformly) continuous.
To complete the proof we show that the identity mapping from (X, d2) to
(X, d) is continuous (again, as it happens, uniformly). Given ε > 0, set
δ = ε/(1 + ε). If x, y ∈ X are such that d2(x, y) < δ then we have

d(x, y)
1 + d(x, y)

<
ε

1 + ε
,

whence d(x, y)(1 + ε) < ε(1 + d(x, y)), which gives d(x, y) < ε.
Thus all the identity mappings between the spaces (X, d), (X, d1) and (X, d2)
are continuous (since they are all composites of maps we have done explicitly),
and so d, d1 and d2 are all (uniformly) equivalent on X.


