The University of Sydney
Pure Mathematics 3901

Tutorial 9

(For all subspaces of \mathbb{R}, use the usual (Euclidean) metric.)

1. Let $X=(0,1 / 4)$ and let $f: X \rightarrow X$ be given by $f(x)=x^{2}$. Prove that f is a contraction mapping with no fixed point in X. Reconcile this with the Contraction Mapping Theorem.

Solution.

A closed subset of a complete space is a complete space, but $(0,1 / 4)$ is not closed in \mathbb{R}. And indeed it is not complete, since (for example) the sequence $(1 / n)_{n=1}^{\infty}$ is a Cauchy sequence in $(0,1 / 4)$ which has no limit in $(0,1 / 4)$. Completeness of the space is an important hypothesis of the Contraction Mapping Theorem; since the hypotheses are not all satisfied here, the theorem cannot be applied.
If $0<x<1 / 4$ then $0<x^{2}<1 / 16<1 / 4$; hence $f(x)=x^{2}$ does define a map from $(0,1 / 4)$ to $(0,1 / 4)$. The only solutions in \mathbb{R} of $x^{2}=x$ are $x=0$ and $x=1$, neither of which lie in $(0,1 / 4)$. So f has no fixed points. Finally, if $x, y \in(0,1 / 4)$ then

$$
\left|x^{2}-y^{2}\right|=|x-y||x+y| \leq|x-y|(|x|+|y|) \leq|x-y|\left(\frac{1}{4}+\frac{1}{4}\right)
$$

that is, $d(f(x), f(y)) \leq \frac{1}{2} d(x, y)$, which shows that f is a contraction mapping.
2. Let $X=\{x \in \mathbb{Q} \mid x \geq 1\}$ and let $f: X \rightarrow X$ be defined by $f(x)=\frac{x}{2}+\frac{1}{x}$. Show that f is a contraction mapping and that f has no fixed point in X.

Solution.
The question asserts that given formula for f defines a mapping $X \rightarrow X$; let us check that it is true. If $x \in \mathbb{Q}$ then $x / 2 \in \mathbb{Q}$ and $1 / x \in \mathbb{Q}$; so $(x / 2)+(1 / x) \in \mathbb{Q}$. If $1 \leq x \leq 2$ then $1 / 2 \leq 1 / x \leq 1$ and $1 / 2 \leq x / 2 \leq 1$; so $(x / 2)+(1 / x) \geq(1 / 2)+(1 / 2)=1$. If $x>2$ then $(x / 2)+(1 / x)>x / 2>1$. So if $x \in \mathbb{Q}$ and $x \geq 1$ then $(x / 2)+(1 / x) \geq 1$, as required.
If $f(x)=x$ then $(x / 2)+(1 / x)=x$, which gives $1 / x=x / 2$, and $x= \pm \sqrt{2}$. So $f(x)=x$ has no solution in X. And if $x, y \in X$ then

$$
d(f(x), f(y))=\left|(x-y)\left(\frac{1}{2}-\frac{1}{x y}\right)\right| \leq \frac{1}{2} d(x, y)
$$

since $x, y \geq 1$ gives $-\frac{1}{2} \leq \frac{1}{2}-\frac{1}{x y}<\frac{1}{2}$. So f is a contraction mapping. (Again the space X is not complete.)
3. Let $X=[1, \infty)$ and let $f: X \rightarrow X$ be given by $f(x)=x+1 / x$. Show that $d(f(x), f(y))<d(x, y)$ for all $x, y \in X$ with $x \neq y$, and show that f has no fixed point in X.

Solution.

This time the Contraction Mapping Theorem will not apply since it is not in fact true that there is an $\alpha<1$ with $d(f(x), f(y)) \leq \alpha d(x, y)$ for all $x, y \in X$. (So f is not a contraction mapping in the sense of the theorem.) It is clear that $x+(1 / x) \geq 1$ whenever $x \geq 1$ (since $1 / x>0$), and so the formula does define a function $X \rightarrow X$. There is no fixed point, since $x+(1 / x)=x$ gives $1 / x=0$, and hence $1=0$. Now for $x, y \geq 1$,

$$
d(f(x), f(y))=\left|(x-y)\left(1-\frac{1}{x y}\right)\right|=d(x, y)\left(1-\frac{1}{x y}\right)<d(x, y),
$$

as claimed.
4. Let $X=[1, \infty)$ and let $f: X \rightarrow X$ be given by $f(x)=\frac{25}{26}(x+1 / x)$. Show that $d(f(x), f(y)) \leq \frac{25}{26} d(x, y)$ (whence f is a contraction mapping). By solving the equation algebraically, show that 5 is the unique fixed point of f.

Solution.

$d(f(x), f(y))=\frac{25}{26} d(x, y)\left(1+\frac{1}{x y}\right) \leq \frac{25}{26} d(x, y)$ (cf. Question 3). It is important that the given formula does define a map $X \rightarrow X$; so let us check that $x \geq 1$ implies $\frac{25}{26}(x+(1 / x)) \geq 1$. If $x \geq \frac{26}{25}$ then $\frac{25}{26}(x+(1 / x))>\frac{25}{26} x \geq 1$. If $1 \leq x \leq \frac{26}{25}$ then $\frac{25}{26} \leq \frac{1}{x} \leq 1$ and $1+\frac{25}{26} \leq x+\frac{1}{x}$, giving $\frac{25}{26}\left(x+\frac{1}{x}\right)^{26} \geq \frac{1275}{676}>1$. Note that X is a complete metric space, being a closed subset of the complete space \mathbb{R}. So the Contraction Mapping Theorem guarantees that there is a unique $x \in X$ with $f(x)=x$. In this case we can easily confirm this by just solving the equation. If $f(x)=x$ then $\frac{26}{25} x=x+\frac{1}{x}$, giving $x^{2}=25$, so that $x=5$ is the only possible solution in X. (And $f(5)=5$ is easily checked.)
5. Let $X=[0,1]$ and let $f: X \rightarrow X$ be given by $f(x)=\frac{1}{7}\left(x^{3}+x^{2}+1\right)$. Show that $d(f(x), f(y)) \leq \frac{5}{7} d(x, y)$. Calculate $f(0), f^{(2)}(0), f^{(3)}(0), \ldots$, and hence find, to three decimal places, the fixed point of f.

Solution.

If $0 \leq x \leq 1$ then $0 \leq x^{3}+x^{2}+1 \leq 3$, and so $0 \leq \frac{1}{7}\left(x^{3}+x^{2}+1\right) \leq \frac{3}{7}<1$. So again the question has not lied: we do have a function $X \rightarrow X$. Now
$d(f(x), f(y))=\frac{1}{7}\left|\left(x^{3}-y^{3}\right)+\left(x^{2}-y^{2}\right)\right|=\frac{1}{7} d(x, y)\left|x^{2}+x y+y^{2}+x+y\right| \leq \frac{5}{7} d(x, y)$
whenever $x, y \in[0,1]$ (since $x^{2}, x y$ etc. are all in $[0,1]$). Again X is a complete space, being a closed subset of \mathbb{R}. According to my calculator: $f(0) \approx 0.142857, f^{(2)}(0) \approx 0.146189, f^{(3)}(0) \approx 0.1463565, f^{(4)}(0) \approx 0.1463650$, \ldots-but this is not a course in numerical analysis.
6. Let $X=[1,2] \cap \mathbb{Q}$ and let $f: X \rightarrow X$ be defined by $f(x)=-\frac{1}{4}\left(x^{2}-2\right)+x$. Prove that f is a contraction mapping and that f has no fixed point in X.

Solution.

The space is not complete, of course. If X were defined simply to be $[1,2]$ then the Contraction Mapping Theorem would apply; however, the solution of $f(x)=x$ in $[1,2]$ turns out to be irrational, and so not in the set X as actually defined. Indeed, $f(x)=x$ if and only if $x^{2}-2=0$, and this has no solution in \mathbb{Q}. The quadratic $-\frac{1}{4}\left(x^{2}-2\right)+x$ has its turning point at 2 , where the function value is $\frac{3}{2}$. So $f(1)=\frac{5}{4} \leq f(x) \leq f(2)=\frac{3}{2}$ for all $x \in[1,2]$. This confirms that $f(x) \in[1,2]$, as the question asserts. And it is also clear that $x \in \mathbb{Q}$ implies $-\frac{1}{4}\left(x^{2}-2\right)+x \in \mathbb{Q}$. For all $x, y \in[1,2]$,

$$
d(f(x), f(y))=|x-y|\left|1-\frac{1}{4}(x+y)\right| \leq \frac{1}{2} d(x, y)
$$

(since $-\frac{1}{4} \leq 1-\frac{1}{4}(x+y) \leq \frac{1}{2}$); so f is a contraction.
7. Let $f:[a, b] \rightarrow[a, b]$ be differentiable over $[a, b]$. Show that f is a contraction mapping if and only if there exists a number $K<1$ such that $\left|f^{\prime}(x)\right| \leq K$ for all $x \in(a, b)$.

Solution.

Suppose first of all that f is a contraction mapping. Then there exists $K<1$ such that $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in[a, b]$. So if $x \in(a, b)$ is arbitrary, then

$$
f^{\prime}(x)=\lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y} \leq \lim _{y \rightarrow x} K=K
$$

Conversely, suppose that $K<1$ and $\left|f^{\prime}(x)\right| \leq K$ for all $x \in(a, b)$. Then for arbitrary $x, y \in[a, b]$ we have that $f(x)-f(y)=f^{\prime}(t)(x-y)$ for some $t \in(x, y) \subseteq(a, b)$ (by the Mean Value Theorem). This gives

$$
|f(x)-f(y)|=\left|f^{\prime}(t)\right||x-y| \leq K|x-y|
$$

as required.
8. Let \mathcal{C} be the set of continuous functions $[0,1] \rightarrow \mathbb{R}$, and let d be given by $d(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$. Define $F: \mathcal{C} \rightarrow \mathcal{C}$ by $(F f)(x)=\int_{0}^{x} f(t) d t$ (for all $f \in \mathcal{C}$). Show that for all $f, g \in X$ and all $x \in[0,1]$,
(i) $\quad(F f)(x)-(F g)(x) \leq x d(f, g)$, and
(ii) $\quad\left(F^{(2)} f\right)(x)-\left(F^{(2)} g\right)(x) \leq \frac{x^{2}}{2} d(f, g)$,
and deduce that $F^{(2)}$ is a contraction mapping. Show, however, that F is not a contraction mapping.

Solution.
(i) $\quad(F f)(x)-(F g)(x)=\int_{0}^{x}(f(t)-g(t)) d t \leq \int_{0}^{x} d(f, g) d t \leq x d(f, g)$.
(ii) $\quad\left(F^{(2)} f\right)(x)-\left(F^{(2)} g\right)(x)=\int_{0}^{x}((F f)(t)-(F g)(t)) d t$

$$
\leq \int_{0}^{x} t d(f, g) d t=\frac{x^{2}}{2} d(f, g)
$$

Thus $d(F f, F g)=\sup _{x \in[0,1]}|(F f)(x)-(F g)(x)| \leq \sup _{x \in[0,1]} x d(f, g) \leq d(f, g)$, and
therefore
$d\left(F^{(2)} f, F^{(2)} g\right)=\sup _{x \in[0,1]}\left|\left(F^{(2)} f\right)(x)-\left(F^{(2)} g\right)(x)\right| \leq \sup _{x \in[0,1]} \frac{x^{2}}{2} d(f, g) \leq \frac{1}{2} d(f, g)$.
Hence $F^{(2)}$ is a contraction mapping. But F is not, since by taking $f=1$ and $g=0$, we have $d(F f, F g)=\sup _{x \in[0,1]} x=1=d(f, g)$.
9. (Square sum criterion) Show that if the $n \times n$ matrix C (over \mathbb{R}) satisfies $\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j k}^{2}<1$, then for any $b \in \mathbb{R}^{n}$ the linear system $x=C x+b$ has a unique solution. (Imitate the proof of Theorem 2.1 of Choo's notes, using the Euclidean metric $\left(d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}\right)$ instead of the one used there.)

Solution.

Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(x)=C x+b$. Let $x, y \in \mathbb{R}^{n}$ and put $z=f(x)$ and $w=f(y)$. Then $z-w=C(x-y)$, and so $z_{i}-w_{i}=\sum_{j=1}^{n} c_{i j}\left(x_{j}-y_{j}\right)$ for each i. Apply the Cauchy-Schwarz inequality (which says that the dot product of two vectors in \mathbb{R}^{n} is at most the product of their lengths - here the two vectors in question are the i-th row of C and $x-y$). We deduce that $\left|z_{i}-w_{i}\right| \leq \sqrt{\sum_{j=1}^{n} c_{i j}^{2}} \sqrt{\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}}$. Squaring and summing on i gives $\sum_{i=1}^{n}\left(z_{i}-w_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}^{2}\right)\left(\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}\right)$. That is, $d(f(x), f(y)) \leq K d(x, y)$, where $K=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}^{2}<1$. Thus f is a contraction mapping, and so has a unique fixed point.

