Metric Spaces

2000

Tutorial 11

- 1. Let (X, d) be a metric space. Prove that the following statements are equivalent:
 - (i) X is disconnected;
 - (*ii*) there exist two nonempty disjoint open subsets A_1 , A_2 in X such that $X = A_1 \cup A_2$;
 - (*iii*) there exist two nonempty disjoint closed subsets A_1 , A_2 in X such that $X = A_1 \cup A_2$;
 - (iv) there exist a nonempty proper subset of X which is both open and closed in X.

Solution.

Suppose that X is disconnected. So X is the union of two nonempty separated sets. That is, there exist nonempty subsets A_1, A_2 of X such that $X = A_1 \cup A_2$ and $A_1 \cap \overline{A_2} = \emptyset = \overline{A_1} \cap A_2$. Now $A_1 \cap \overline{A_2} = \emptyset$ implies that $A_1 \subseteq X \setminus \overline{A_2}$ (the complement of $\overline{A_2}$), while $X = A_1 \cup A_2$ and $A_2 \subseteq \overline{A_2}$ give $X \setminus \overline{A_2} \subseteq X \setminus A_2 \subseteq A_1 = A_1 \cup A_2 \setminus A_2 \subseteq A_1$. So $A_1 = X \setminus \overline{A_2}$, and so A_1 is open in X (as it is the complement of the closed set $\overline{A_2}$). Similarly $A_2 = X \setminus \overline{A_1}$ is open in X. And $A_1 \cap A_2 \subseteq A_1 \cap \overline{A_2} = \emptyset$. So A_1 and A_2 are nonempty disjoint open sets whose union is X. So we have shown that (i) implies (ii).

Now abandon the assumptions of the previous paragraph and assume instead that (*ii*) holds: that is, assume that A_1 and A_2 are open and nonempty, $X = A_1 \cup A_2$ and $A_1 \cap A_2 = \emptyset$. Then A_1 is the complement of the open set A_2 , and so A_1 is closed. Similarly $A_2 = X \setminus A_1$ is closed. So X is the disjoint union of the nonempty closed sets A_1 and A_2 , whence (*iii*) holds.

Assume that (*iii*) holds. Since $A_1 = X \setminus A_2$ and A_2 is closed, it follows that A_1 is open. Since X_2 is nonempty, $X \setminus A_2$ is a proper subset of X. Thus A_1 is a nonempty proper subset which is both open and closed in X. (Of course, so is A_2 .) So (*iv*) holds.

Assume (*iv*). Let A_1 be a nonempty proper subset of X which is both open and closed in X, and let $A_2 = X \setminus A_1$, so that $X = A_1 \cup A_2$ and $A_1 \cap A_2 = \emptyset$. Since A_1 is open, its complement, A_2 is closed. So $\overline{A_2} = A_2$, and $\overline{A_1} = A_1$ (since A_1 is closed). So $\overline{A}_1 \cap A_2 = A_1 \cap \overline{A}_2 = A_1 \cap A_2 = \emptyset$. So A_1 and A_2 are separated, and since $X = A_1 \cup A_2$ we have shown that X is disconnected. So (i) holds.

Hence all the statements are equivalent.

2. Let A be a closed and bounded set in \mathbb{R} and let $p = \sup A$. Prove that $p \in A$.

Solution.

Note that the assumption that A is bounded guarantees that A has a supremum. (Actually, we only need A to be bounded above.) Now suppose, for a contradiction, that $p \notin A$. Then $p \in \mathbb{R} \setminus A$, which is open since A is closed. So there exists an $\varepsilon > 0$ such that the open interval $(p - \varepsilon, p + \varepsilon) = B(p, \varepsilon)$ is contained in $X \setminus A$. Now let $a \in A$ be arbitrary. Then $a \leq p$ since p is an upper bound for A. If $a > p - \varepsilon$ then $a \in (p - \varepsilon, p] \subseteq (p - \varepsilon, p + \varepsilon) \subseteq \mathbb{R} \setminus A$, contradicting $a \in A$. So $a \leq p - \varepsilon$, and since this holds for all $a \in A$ it follows that $p - \varepsilon$ is an upper bound for A. Since p is the least upper bound for A it follows that $p \leq p - \varepsilon$, contradicting $\varepsilon > 0$.

3. Provide two examples of disconnected sets A with \overline{A} connected.

Solution.

Let $X = \mathbb{R}$, with the usual topology, and put $A = (0, 1) \cup (1, 2)$. Then A is not connected, but $\overline{A} = [0, 2]$ is.

For another example, let $A \subseteq \mathbb{R}$ be the set of all irrational numbers. Then $A_1 = A \cap (0, \infty)$ and $A_2 = A \cap (-\infty, 0)$ are open subsets of A. (That is, they are open as subsets of A—open in the subspace topology on A.) Since $A = A_1 \cup A_2$ we see that A is disconnected. But $\overline{A} = \mathbb{R}$ is connected.

4. Let X be a metric space and $(A_i)_{i \in I}$ a family of connected subsets in X, and B a connected subset of X such that for each $i, A_i \cap B \neq \emptyset$. Prove that the union $A = B \cup (\bigcup_i A_i)$ is connected.

Solution.

Suppose, for a contradiction, that $A = U_1 \cup U_2$, where U_1 and U_2 are nonempty subsets of A that are open in the subspace topology on A. Since $B \subseteq A$ it follows that $B = (B \cap U_1) \cup (B \cap U_2)$, the union of two open sets of B. Since B is connected, either $B \cap U_1 = \emptyset$ and $B \cap U_2 = B$, or $B \cap U_2 = \emptyset$ and $B \cap U_1 = B$. Renumbering U_1 and U_2 if need be, we may assume the former alternative. So $B \cap U_2 = B$, which means that $B \subseteq U_2$.

Now for each $i \in I$ we have $A_i \subseteq A = U_1 \cup U_2$, and so $A_i = (A_1 \cap U_1) \cup (A_i \cap U_2)$, the union of two open sets of A_i . Since $\emptyset \neq A_i \cap B \subseteq A_i \cap U_2$, and since A_i

is connected, it follows that $A_i \cap U_1 = \emptyset$. This holds for all $i \in I$, and since also $B \cap U_1 = \emptyset$ it follows that

$$U_1 = A \cap U_1 = (B \cup \bigcup_i A_i) \cap U_1 = (B \cap U_1) \cup \bigcup_i (A_i \cap U_1) = \emptyset,$$

contradicting the original choice of U_1 and U_2 .

5. Let $A \subseteq \mathbb{R}^n$ be a disconnected set with disconnection $U_1 \cup U_2$. Let B be a connected subset of A. Show that either $B \subset U_1$ or $B \subset U_2$.

Solution.

The same is true for any topological space X, we do not need to assume that we are dealing with \mathbb{R}^n .

Since $B \subseteq A$ and U_1 and U_2 are open in A, it follows that $B \cap U_1$ and $B \cap U_2$ are open in B. Since $B \subseteq U_1 \cup U_2$ it follows that $B = (B \cap U_1) \cup (B \cap U_2)$, and since B is connected one of the sets $B \cap U_i$ is empty and the other is B. But $B \cap U_i = B$ implies $B \subseteq U_i$; so either $B \subseteq U_1$ or $B \subseteq U_2$.

6. For each of the following pairs of sets X and Y, explain why they are not homeomorphic.

(i)
$$X = \mathbb{R}, Y = (0, 2]$$
 (ii) $X = [0, 2), Y = [0, 2]$
(iii) $X = [0, 2], Y = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 4 \}$

Solution.

- (i) Observe that $Y \setminus \{2\} = (0, 2)$ is a connected space. If there were a homeomorphism $f: Y \to X$ then $X \setminus \{f(2)\}$ would be homeomorphic to $Y \setminus \{2\}$, and hence connected. But $\mathbb{R} \setminus \{a\}$ is disconnected for all $a \in \mathbb{R}$; so no such homeomorphism exists.
- (*ii*) Observe that $Y \setminus \{0, 2\} = (0, 2)$ is connected; so if X and Y were homeomorphic there would exist two (distinct) points $a, b \in X$ with $X \setminus \{a, b\}$ connected. Without loss of generality, suppose that a < b. Then since $a, b \in (0, 2]$ we have $0 < a < b \leq 2$, and then $X \setminus \{a, b\}$ is either $(0, a) \cup (a, b) \cup (b, 2]$ (if $b \neq 2$) or $(0, a) \cup (a, 2)$ (if b = 2). In both cases it is disconnected.
- (*iii*) Again, removal of 0 and 2 from X leaves a connected set, but the removal of any two distinct points from the circle Y will leave a disconnected set. So X and Y are not homeomorphic.

7. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $(f(t))^2 = 4$ for all $t \in \mathbb{R}$. Prove that either f(t) = 2 for all $t \in \mathbb{R}$ or f(t) = -2 for all $t \in \mathbb{R}$.

Solution.

Let $U_1 = f^{-1}(2) = \{t \mid f(t) = 2\}$, and $U_2 = f^{-1}(-2)$. Since $\{2\}$ and $\{-2\}$ are both closed in \mathbb{R} , and continuous preimages of closed sets are closed (by the definition of continuity), it follows that U_1 and U_2 are both closed. They are obviously disjoint, and since for all $t \in \mathbb{R}$ we have $(f(t))^2 = 4$, giving $f(t) = \pm 2$, either $t \in U_1$ or $t \in U_2$. So $\mathbb{R} = U_1 \cup U_2$. But \mathbb{R} is connected, and so cannot be the disjoint union of two nonempty closed sets. So either $U_1 = \emptyset$ and $U_2 = \mathbb{R}$ or vice versa, whence either f(t) = 2 for all $t \in \mathbb{R}$ or f(t) = -2 for all $t \in \mathbb{R}$.

Supplementary questions

8. Use Question 4 and results from lectures to show that the unit square in \mathbb{R}^2 , given by $S = \{ (x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1 \}$, is a connected subset of \mathbb{R}^2 .

Solution.

For each $y \in [0,1]$ define $A_y = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1\}$. It is clear that $x \mapsto (x,y)$ is a continuous map from [0,1] to A_y , and since [0,1] is connected (as proved in lectures) it follows that A_y is connected. Similarly, the set $B = \{(0,y) \in \mathbb{R}^2 \mid 0 \le y \le 1\}$ is connected. Moreover, $B \cap A_y \ne \emptyset$ for each y, since $(0,y) \in B \cap A_y$. By Question 4, $B \cup \bigcup_{y \in [0,1]} A_y$ is connected; that is, S is connected.

9. Use the previous exercise to show that $E = \{ (x, y) \in \mathbb{R}^2 \mid 2x^2 + 3y^2 \le 1 \}$ is connected.

Solution.

The function $(x, y) \mapsto (\frac{1}{\sqrt{2}}x\cos(\pi y), \frac{1}{\sqrt{3}}x\sin(\pi y))$ is continuous since its component functions are differentiable, and it maps the square S onto the ellipse E. Since continuous images of connected sets are connected it follows that E is connected.