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Assignment 1

1. Let (X1, d1) and (X2, d2) be metric spaces, and let X = X1×X2, the Cartesian
product of X1 and X2. Define d:X ×X → R by the formula

d(x, y) = max{d1(x1, y1), d2(x2, y2)}

for all x = (x1, x2) and y = (y1, y2) in X.

Prove that d is a metric on X.

Solution.

Let a, b ∈ X. Then a = (a1, a2) and b = (b1, b2) for some a1, b1 ∈ X1 and
a2, b2 ∈ X2, and since d1 is a metric on X1 and d2 is a metric on X2 we have
d1(a1, b1) = d1(b1, a1) ≥ 0 and d2(a2, b2) = d2(b2, a2) ≥ 0 (by the condition
(M1) in the definition of a metric). Hence

d(a, b) = d((a1, a2), (b1, b2)) = max{d1(a1, b1), d2(a2, b2)}
= max{d1(b1, a1), d2(b2, a2)} = d((b1, b2), (a1, a2)) = d(b, a).

Furthermore, d(a, b) ≥ d1(a1, b1) ≥ 0. Since a and b were arbitrary points
of X we have shown that d(a, b) = d(b, a) ≥ 0 for all a, b ∈ X. Thus d
satisfies (M1).

Suppose that a, b ∈ X satisfy d(a, b) = 0. Writing a = (a1, a2) and b = (b1, b2)
as above, we have

0 ≤ d1(a1, b1) ≤ max{d1(b1, a1), d2(b2, a2)} = d(a, b) = 0,

and so d1(a1, b1) = 0. Similarly d2(a2, b2) = 0. Now since d1 and d2 satisfy
condition (M2) it follows that a1 = b1 and a2 = b2, and therefore

a = (a1, a2) = (b1, b2) = b.

Since a, b ∈ X were arbitrary subject to d(a, b) = 0, we have shown that for
all a, b ∈ X, if d(a, b) = 0 then a = b. Conversely, if a = b then a1 = b1 and
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a2 = b2, and since d1 and d2 are metrics it follows that d1(a1, b1) = 0 and
d2(a2, b2) = 0, whence

d(a, b) = max{d1(b1, a1), d2(b2, a2)} = max{0} = 0.

So d(a, b) = 0 if and only if a = b, and so d satisfies (M2).
Now let a, b, c ∈ X be arbitrary, and write a1, b1, c1 for their X1 components
and a2, b2, c2 for their X2 components. Since d1 is a metric, (M3) gives

d1(b1, c1) ≤ d1(a1, b1) + d1(a1, c1) ≤ d(a, b) + d(a, c), (1)

since d1(a1, b1) ≤ max{d1(a1, b1), d2(a2, b2)} = d(a, b) and d1(a1, c1) ≤ d(a, c)
similarly. In the same way, since d2 is a metric,

d2(b2, c2) ≤ d2(a2, b2) + d2(a2, c2) ≤ d(a, b) + d(a, c), (2)

and (1) and (2) together give

d(b, c) = max{d1(b1, c1), d2(b2, c2)} ≤ d(a, b) + d(a, c).

This holds for all a, b, c ∈ X, and so d satisfies (M3). Since it satisfies all of
(M1), (M2) and (M3), it is a metric.

2. Let U be the set of all subsets of the set [0, 1] = {x ∈ R | 0 ≤ x ≤ 1 }, and let
V = {∅, [0, 1]}, a subset of U . Let X = ([0, 1],U) and Y = ([0, 1],V).

(i) Show that X and Y are both topological spaces.
(ii) Describe all the continuous functions from X to X, all the continuous

functions from X to Y , all the continuous functions from Y to X and
all the continuous functions from Y to Y .
(Recall that the definition of continuity for functions from one topolog-
ical space to another is that a function is continuous if and only if the
preimage of every open set is open.)

Solution.

(i) Recall that a collection of subsets of a set S is called a topology on S if and
only if the collection is closed under arbitrary unions and finite intersections,
and S and ∅ are both in the collection. We must show that U and V both
satisfy these properties (with S = [0, 1]).
Since U consists of all subsets of [0, 1], in particular [0, 1] and ∅ are in U .
The union of any family of sets that are subsets of [0, 1] is obviously a subset
of [0, 1], and also the intersection of any family of sets that are subsets of
[0, 1] is a subset of [0, 1]. So U is closed under arbitrary unions and arbitrary
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intersections; hence it is closed under arbitrary unions and finite intersections,
as required.
Since by definition V = {∅, [0, 1]}, there is no doubt that [0, 1] and ∅ are in V.
The union of a family of sets, all of which are either [0, 1] or ∅, is clearly [0, 1]
if one or more of the sets in the family is [0, 1], and is ∅ otherwise; similarly
the intersection of such a family is ∅ if one or more of the sets in the family
is ∅, and is [0, 1] otherwise. So V also is closed under arbitrary unions and
intersections.
(ii) As explained in lectures, a function from one toplogical space to another
means a function between the underlying sets of those spaces. Thus by “a
function from X to Y ” I mean just a function from [0, 1] to [0, 1]; however,
when determining whether or not the function is continuous we need to know
that we use the topology U for [0, 1] considered as the domain of f and the
topology V for [0, 1] considered as the codomain of f . Thus a continuous
function X → Y means a function [0, 1] → [0, 1] such that the preimage of
every set in V is in U .
Observe first that if A and B are any two sets and f :A → B any function
then the preimage of B is A and the preimage of the empty subset of B is the
empty subset of A. To see this, observe that by definition

f−1(B) = {x ∈ A | f(x) ∈ B } = A,

since the fact that f is a function from A to B guarantees that the statement
“f(x) ∈ B” is true for all x ∈ A. Similarly,

f−1(∅) = {x ∈ A | f(x) ∈ ∅ } = ∅,

since no element x can satisfy the condition “f(x) ∈ ∅”: it is impossible for
f(x) to be an element of ∅ since ∅ has no elements.
Now let A = (S, T ) be any topological space and f any function from A to Y .
Then f is continuous if and only if f−1(∅) ∈ T and f−1([0, 1]) ∈ T (since ∅ and
[0, 1] are the only sets in the topology V). But f−1(∅) = ∅ and f−1([0, 1]) = S,
and certainly ∅ ∈ T and S ∈ T , whatever the topology T is, since it is part of
the definition of a topology that the empty set and the whole set must always
be open. So every function from A to Y is continuous.
Similarly, any function f from X to any topological space A will necessarily
be continuous, since all subsets of [0, 1] are open sets of X. By definition, f
is continuous if and only if f−1(U) ∈ U for all open sets U of A. But f−1(U)
is a subsets of [0, 1], and hence is in U in every case, since U consists of all
subsets of [0, 1]. So every f satisfies the requirements for continuity.
The above shows that every function from X to X is continuous, every func-
tion from Y to Y is continuous, and every function from X to Y is continuous;
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we have even given two proofs of this last fact. It remains to determine which
functions from Y to X are continuous.
Let us show first that constant functions from Y to X are continuous. So,
suppose that c ∈ [0, 1] and f : [0, 1] → [0, 1] satisfies f(x) = c for all x ∈ [0, 1].
Let U be an open subset of the codomain of f . (Since the topology for the
codomain is U in this case, U can be any subset of [0, 1].) Now

f−1(U) = {x ∈ [0, 1] | f(x) ∈ U } = {x ∈ [0, 1] | c ∈ U } =
{
∅ if c /∈ U ,
[0, 1] if c ∈ U .

In either case (whether c ∈ U or c /∈ U) the preimage of U is open, since ∅
and [0, 1] are the two open sets of Y .
Now we show that, conversely, every continuous function from Y to X must
be constant. Suppose that f is a continuous function from Y to X, and let
c = f(0). Since all subsets of [0, 1] are open sets of X, the singleton set {c} is
open, and since f is continuous it follows that f−1({c}) is open. But

f−1({c}) = {x ∈ [0, 1] | f(x) ∈ {c} } = {x ∈ [0, 1] | f(x) = c },

and this set is certainly not empty, since f(0) = c shows that 0 ∈ f−1({c}).
But the only open set of Y that is not empty is the whole set [0, 1]. So we
conclude that

{x ∈ [0, 1] | f(x) = c } = [0, 1],

and thus f(x) = c for all x ∈ [0, 1]. That is, f is constant, as claimed. So the
continuous functions from Y to X are precisely the constant functions.

3. Let d be a metric on the set X. Using results from Tutorials 1 and 2 (which
you may quote without proof) show that there exists a metric D on X with
the following properties: D(x, y) ≤ 1 for all x, y ∈ X; every open ball of the
metric space (X, d) is an open ball of the metric space (X, D); every open ball
of the metric space (X, D), excluding X itself, is an open ball of the metric
space (X, d).

Solution.

By Question 7 of Tutorial 2, the formula D(x, y) = d(x, y)/(1 + d(x, y)) (for
all x, y ∈ X) defines a metric on X. We shall not repeat the proof of this
here. Everything that we do have to prove follows from the following fact:
the formula f(r) = r/(1 + r) defines a strictly increasing bijective function
f : [0,∞) → [0, 1). So we start by proving this.
If r ∈ [0,∞) then 0 ≤ r < 1+r, and so 0 ≤ r/(1+r) < (1+r)/(1+r) = 1. Thus
the given formula does define a function [0,∞) → [0, 1). Now let r, s ∈ [0,∞)
with 0 ≤ r < s. Then 0 < 1 + r < 1 + s; so 1/(1 + s) < 1/(1 + r), giving
f(r) = r/(1 + r) = 1− (1/(1 + r)) < 1− (1/(1 + s) = s/(1 + s) = f(s). This
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shows that f is strictly increasing, and also one-to-one, on [0,∞). To show
that f is onto we show that if t ∈ [0, 1) then r = t/(1 − t) is in [0,∞) and
satisfies f(r) = t. Observe that t ∈ [0, 1) gives 1 − t > 0; so 1/(1 − t) > 0,
and since t ≥ 0 we have t/(1 − t) ≥ 0/(1 − t) = 0. So r ∈ [0,∞), and now
f(r) = r/(1+ r) = t

1−t/(1+ t
1−t ) = t/((1− t)+ t) = t, as required. (This also

shows that the inverse function f−1: [0, 1) → [0,∞) is given by the formula
f−1(t) = t/(1− t).)
Let x, y ∈ X. Then D(x, y) = d(x, y)/(1 + d(x, y)) = f(d(x, y)) ∈ [0, 1). So
D(x, y) < 1 for all x, y ∈ X.
Let B be any open ball in (X, d). That is, there exist some a ∈ X and
r > 0 such that B = Bd(a, r) = {x ∈ X | d(a, x) < r }. We shall show
that B is an open ball in (X, D) by showing that Bd(a, r) = BD(a, f(r)).
Now if x ∈ Bd(a, r) then d(a, x) < r, and, since f is strictly increasing,
f(d(a, x)) < f(r). But f(d(a, x)) = D(a, x), by the definition of D; so
D(a, x) < f(r), showing that x ∈ BD(a, f(r)). This holds for all x ∈ Bd(a, r);
so Bd(a, r) ⊆ BD(a, f(r)). On the other hand, suppose that x /∈ Bd(a, r).
Then d(a, x) ≥ r, and, as f is strictly increasing, D(a, x) = f(d(a, x)) ≥ f(r),
showing that x /∈ BD(a, f(r)). So x ∈ Bd(a, r) if and only if x ∈ BD(a, f(r)).
So Bd(a, r) = BD(a, f(r)), as required. Since B = Bd(a, r) was an arbitrary
open ball in (X, d) we have shown that every open ball of (X, d) is an open
ball of (X, D).
Now let B′ be an arbitrary open ball in (X, D) such that B′ 6= X. We
have B′ = BD(a, t) for some t > 0. If t ≥ 1 then for all x ∈ X we have
that D(a, x) < 1 ≤ t, and so x ∈ B′. This shows that B′ is the whole
of X, contrary to the choice of B′. So we are left with the case t ∈ (0, 1).
Since f is a bijection from [0,∞) to [0, 1)—and f(0) = 0—it follows that
there exists r ∈ (0,∞) with f(r) = t. As shown above, in this situation
Bd(a, r) = BD(a, f(r)) = BD(a, t) = B′. Since B′ was an arbitrary open ball
in (X, D) different from X, we have shown that every open ball in (X, D)
except X is an open ball in (X, d).

4. Let X be the set of all positive integers, and for each n ∈ X define v(n) to
be the largest power of 2 that is a factor of n. (Thus, for example, v(12) = 4
and v(7) = 1.) For n, m ∈ X define

d(n, m) =
{

0 if n = m,
1

v(|n−m|) if n 6= m.

Is d a metric on X?

Solution.

It is a metric. To show this it is sufficient (and necessary) to show that (M1),
(M2) and (M3) are satisfied.
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Since |n−m| = |m− n| it follows that

d(n, m) =
1

v(|n−m|)
=

1
v(|m− n|)

= d(m,n)

for all m, n ∈ X with m 6= n. Also v(k) > 0 for every positive integer k,
and so d(n, m) = 1/v(|n − m|) > 0 for all n, m ∈ X with n 6= m. If
m = n then obviously d(m,n) = d(n, m), and d(m,n) = 0 by definition.
So d(m,n) = d(n, m) ≥ 0 for all m, n ∈ X. So (M1) holds.
We have just observed that d(m,n) = 0 if m = n and d(m,n) > 0 if m 6= n;
so d(m,n) = 0 if and only if m = n. That is, (M2) holds.
It remains to check (M3), the triangle inequality. Let m, n and l be arbitrary
elements of X. We shall show that

d(l,m) + d(l, n) ≥ d(m,n).

Note that if l = m this becomes d(m,m) + d(m,n) ≥ d(m,n), which is trivial
since d(m,m) = 0. Likewise if l = n it becomes d(n, m) + d(n, n) ≥ d(m,n),
which is also trivial since d(n, n) = 0 and d(n, m) = d(m,n). Furthermore,
if m = n it becomes d(l,m) + d(l, m) ≥ d(m,m), and this is trivial too since
d(l,m) ≥ 0 = d(m,m). So we may assume that l, m and n are all distinct.
By the unique factorization theorem for integers, every nonzero integer k can
be uniquely written in the form k = k1k2, where k1 and k2 are integers with k1

a power of 2 and k2 odd. (Here k2 is positive if and only if k is.) The number
k1 is then the largest power of 2 that is a factor of k. So, write m− l = k1k2

and l − n = h1h2, where k2, h2 are odd and k1 = 2a and h1 = 2b are powers
of 2. Then |l −m| = k1|k2| and |l − n| = h1|h2|, and so v(|l −m|) = k1 and
v(|l − n|) = h1. Thus

d(l, m) =
1
k1

+
1
h1

=
1
2a

+
1
2b
≥ 1

2c
(∗)

where c = min{a, b}. Now we have

m− n = (m− l) + (l − n) = 2ak2 + 2bh2 = 2c(2a−ck2 + 2b−ch2),

and (2a−ck2 + 2b−ch2) is an integer since a ≥ c and b ≥ c. It follows that the
largest power of 2 that is a factor of |m − n| is greater than or equal to 2c.
Thus

d(m,n) =
1

v(|m− n|)
≤ 1

2c
≤ d(l,m) + d(l, n)

by (∗), as required.


