The University of Sydney Pure Mathematics 3901

Assignment 1

1. Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces, and let $X=X_{1} \times X_{2}$, the Cartesian product of X_{1} and X_{2}. Define $d: X \times X \rightarrow \mathbb{R}$ by the formula

$$
d(x, y)=\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\}
$$

for all $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in X.
Prove that d is a metric on X.
Solution.
Let $a, b \in X$. Then $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ for some $a_{1}, b_{1} \in X_{1}$ and $a_{2}, b_{2} \in X_{2}$, and since d_{1} is a metric on X_{1} and d_{2} is a metric on X_{2} we have $d_{1}\left(a_{1}, b_{1}\right)=d_{1}\left(b_{1}, a_{1}\right) \geq 0$ and $d_{2}\left(a_{2}, b_{2}\right)=d_{2}\left(b_{2}, a_{2}\right) \geq 0$ (by the condition (M1) in the definition of a metric). Hence

$$
\begin{aligned}
d(a, b)= & d\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\max \left\{d_{1}\left(a_{1}, b_{1}\right), d_{2}\left(a_{2}, b_{2}\right)\right\} \\
& =\max \left\{d_{1}\left(b_{1}, a_{1}\right), d_{2}\left(b_{2}, a_{2}\right)\right\}=d\left(\left(b_{1}, b_{2}\right),\left(a_{1}, a_{2}\right)\right)=d(b, a) .
\end{aligned}
$$

Furthermore, $d(a, b) \geq d_{1}\left(a_{1}, b_{1}\right) \geq 0$. Since a and b were arbitrary points of X we have shown that $d(a, b)=d(b, a) \geq 0$ for all $a, b \in X$. Thus d satisfies (M1).
Suppose that $a, b \in X$ satisfy $d(a, b)=0$. Writing $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ as above, we have

$$
0 \leq d_{1}\left(a_{1}, b_{1}\right) \leq \max \left\{d_{1}\left(b_{1}, a_{1}\right), d_{2}\left(b_{2}, a_{2}\right)\right\}=d(a, b)=0
$$

and so $d_{1}\left(a_{1}, b_{1}\right)=0$. Similarly $d_{2}\left(a_{2}, b_{2}\right)=0$. Now since d_{1} and d_{2} satisfy condition (M2) it follows that $a_{1}=b_{1}$ and $a_{2}=b_{2}$, and therefore

$$
a=\left(a_{1}, a_{2}\right)=\left(b_{1}, b_{2}\right)=b
$$

Since $a, b \in X$ were arbitrary subject to $d(a, b)=0$, we have shown that for all $a, b \in X$, if $d(a, b)=0$ then $a=b$. Conversely, if $a=b$ then $a_{1}=b_{1}$ and
$a_{2}=b_{2}$, and since d_{1} and d_{2} are metrics it follows that $d_{1}\left(a_{1}, b_{1}\right)=0$ and $d_{2}\left(a_{2}, b_{2}\right)=0$, whence

$$
d(a, b)=\max \left\{d_{1}\left(b_{1}, a_{1}\right), d_{2}\left(b_{2}, a_{2}\right)\right\}=\max \{0\}=0
$$

So $d(a, b)=0$ if and only if $a=b$, and so d satisfies (M2).
Now let $a, b, c \in X$ be arbitrary, and write a_{1}, b_{1}, c_{1} for their X_{1} components and a_{2}, b_{2}, c_{2} for their X_{2} components. Since d_{1} is a metric, (M3) gives

$$
\begin{equation*}
d_{1}\left(b_{1}, c_{1}\right) \leq d_{1}\left(a_{1}, b_{1}\right)+d_{1}\left(a_{1}, c_{1}\right) \leq d(a, b)+d(a, c), \tag{1}
\end{equation*}
$$

since $d_{1}\left(a_{1}, b_{1}\right) \leq \max \left\{d_{1}\left(a_{1}, b_{1}\right), d_{2}\left(a_{2}, b_{2}\right)\right\}=d(a, b)$ and $d_{1}\left(a_{1}, c_{1}\right) \leq d(a, c)$ similarly. In the same way, since d_{2} is a metric,

$$
\begin{equation*}
d_{2}\left(b_{2}, c_{2}\right) \leq d_{2}\left(a_{2}, b_{2}\right)+d_{2}\left(a_{2}, c_{2}\right) \leq d(a, b)+d(a, c) \tag{2}
\end{equation*}
$$

and (1) and (2) together give

$$
d(b, c)=\max \left\{d_{1}\left(b_{1}, c_{1}\right), d_{2}\left(b_{2}, c_{2}\right)\right\} \leq d(a, b)+d(a, c)
$$

This holds for all $a, b, c \in X$, and so d satisfies (M3). Since it satisfies all of (M1), (M2) and (M3), it is a metric.
2. Let \mathcal{U} be the set of all subsets of the set $[0,1]=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$, and let $\mathcal{V}=\{\emptyset,[0,1]\}$, a subset of \mathcal{U}. Let $X=([0,1], \mathcal{U})$ and $Y=([0,1], \mathcal{V})$.
(i) Show that X and Y are both topological spaces.
(ii) Describe all the continuous functions from X to X, all the continuous functions from X to Y, all the continuous functions from Y to X and all the continuous functions from Y to Y.
(Recall that the definition of continuity for functions from one topological space to another is that a function is continuous if and only if the preimage of every open set is open.)

Solution.

(i) Recall that a collection of subsets of a set S is called a topology on S if and only if the collection is closed under arbitrary unions and finite intersections, and S and \emptyset are both in the collection. We must show that \mathcal{U} and \mathcal{V} both satisfy these properties (with $S=[0,1]$).
Since \mathcal{U} consists of all subsets of $[0,1]$, in particular $[0,1]$ and \emptyset are in \mathcal{U}. The union of any family of sets that are subsets of $[0,1]$ is obviously a subset of $[0,1]$, and also the intersection of any family of sets that are subsets of $[0,1]$ is a subset of $[0,1]$. So \mathcal{U} is closed under arbitrary unions and arbitrary
intersections; hence it is closed under arbitrary unions and finite intersections, as required.
Since by definition $\mathcal{V}=\{\emptyset,[0,1]\}$, there is no doubt that $[0,1]$ and \emptyset are in \mathcal{V}. The union of a family of sets, all of which are either $[0,1]$ or \emptyset, is clearly $[0,1]$ if one or more of the sets in the family is $[0,1]$, and is \emptyset otherwise; similarly the intersection of such a family is \emptyset if one or more of the sets in the family is \emptyset, and is $[0,1]$ otherwise. So \mathcal{V} also is closed under arbitrary unions and intersections.
(ii) As explained in lectures, a function from one toplogical space to another means a function between the underlying sets of those spaces. Thus by "a function from X to $Y^{\prime \prime}$ I mean just a function from $[0,1]$ to $[0,1]$; however, when determining whether or not the function is continuous we need to know that we use the topology \mathcal{U} for $[0,1]$ considered as the domain of f and the topology \mathcal{V} for $[0,1]$ considered as the codomain of f. Thus a continuous function $X \rightarrow Y$ means a function $[0,1] \rightarrow[0,1]$ such that the preimage of every set in \mathcal{V} is in \mathcal{U}.
Observe first that if A and B are any two sets and $f: A \rightarrow B$ any function then the preimage of B is A and the preimage of the empty subset of B is the empty subset of A. To see this, observe that by definition

$$
f^{-1}(B)=\{x \in A \mid f(x) \in B\}=A
$$

since the fact that f is a function from A to B guarantees that the statement " $f(x) \in B$ " is true for all $x \in A$. Similarly,

$$
f^{-1}(\emptyset)=\{x \in A \mid f(x) \in \emptyset\}=\emptyset
$$

since no element x can satisfy the condition " $f(x) \in \emptyset$ ": it is impossible for $f(x)$ to be an element of \emptyset since \emptyset has no elements.
Now let $A=(S, \mathcal{T})$ be any topological space and f any function from A to Y. Then f is continuous if and only if $f^{-1}(\emptyset) \in \mathcal{T}$ and $f^{-1}([0,1]) \in \mathcal{T}$ (since \emptyset and $[0,1]$ are the only sets in the topology $\mathcal{V})$. But $f^{-1}(\emptyset)=\emptyset$ and $f^{-1}([0,1])=S$, and certainly $\emptyset \in \mathcal{T}$ and $S \in \mathcal{T}$, whatever the topology \mathcal{T} is, since it is part of the definition of a topology that the empty set and the whole set must always be open. So every function from A to Y is continuous.
Similarly, any function f from X to any topological space A will necessarily be continuous, since all subsets of $[0,1]$ are open sets of X. By definition, f is continuous if and only if $f^{-1}(U) \in \mathcal{U}$ for all open sets U of A. But $f^{-1}(U)$ is a subsets of $[0,1]$, and hence is in \mathcal{U} in every case, since \mathcal{U} consists of all subsets of $[0,1]$. So every f satisfies the requirements for continuity.
The above shows that every function from X to X is continuous, every function from Y to Y is continuous, and every function from X to Y is continuous;
we have even given two proofs of this last fact. It remains to determine which functions from Y to X are continuous.
Let us show first that constant functions from Y to X are continuous. So, suppose that $c \in[0,1]$ and $f:[0,1] \rightarrow[0,1]$ satisfies $f(x)=c$ for all $x \in[0,1]$. Let U be an open subset of the codomain of f. (Since the topology for the codomain is \mathcal{U} in this case, U can be any subset of $[0,1]$.) Now
$f^{-1}(U)=\{x \in[0,1] \mid f(x) \in U\}=\{x \in[0,1] \mid c \in U\}= \begin{cases}\emptyset & \text { if } c \notin U, \\ {[0,1]} & \text { if } c \in U .\end{cases}$
In either case (whether $c \in U$ or $c \notin U$) the preimage of U is open, since \emptyset and $[0,1]$ are the two open sets of Y.
Now we show that, conversely, every continuous function from Y to X must be constant. Suppose that f is a continuous function from Y to X, and let $c=f(0)$. Since all subsets of $[0,1]$ are open sets of X, the singleton set $\{c\}$ is open, and since f is continuous it follows that $f^{-1}(\{c\})$ is open. But

$$
f^{-1}(\{c\})=\{x \in[0,1] \mid f(x) \in\{c\}\}=\{x \in[0,1] \mid f(x)=c\}
$$

and this set is certainly not empty, since $f(0)=c$ shows that $0 \in f^{-1}(\{c\})$. But the only open set of Y that is not empty is the whole set $[0,1]$. So we conclude that

$$
\{x \in[0,1] \mid f(x)=c\}=[0,1]
$$

and thus $f(x)=c$ for all $x \in[0,1]$. That is, f is constant, as claimed. So the continuous functions from Y to X are precisely the constant functions.
3. Let d be a metric on the set X. Using results from Tutorials 1 and 2 (which you may quote without proof) show that there exists a metric D on X with the following properties: $D(x, y) \leq 1$ for all $x, y \in X$; every open ball of the metric space (X, d) is an open ball of the metric space (X, D); every open ball of the metric space (X, D), excluding X itself, is an open ball of the metric space (X, d).
Solution.
By Question 7 of Tutorial 2, the formula $D(x, y)=d(x, y) /(1+d(x, y))$ (for all $x, y \in X$) defines a metric on X. We shall not repeat the proof of this here. Everything that we do have to prove follows from the following fact: the formula $f(r)=r /(1+r)$ defines a strictly increasing bijective function $f:[0, \infty) \rightarrow[0,1)$. So we start by proving this.
If $r \in[0, \infty)$ then $0 \leq r<1+r$, and so $0 \leq r /(1+r)<(1+r) /(1+r)=1$. Thus the given formula does define a function $[0, \infty) \rightarrow[0,1)$. Now let $r, s \in[0, \infty)$ with $0 \leq r<s$. Then $0<1+r<1+s$; so $1 /(1+s)<1 /(1+r)$, giving $f(r)=r /(1+r)=1-(1 /(1+r))<1-(1 /(1+s)=s /(1+s)=f(s)$. This
shows that f is strictly increasing, and also one-to-one, on $[0, \infty)$. To show that f is onto we show that if $t \in[0,1)$ then $r=t /(1-t)$ is in $[0, \infty)$ and satisfies $f(r)=t$. Observe that $t \in[0,1)$ gives $1-t>0$; so $1 /(1-t)>0$, and since $t \geq 0$ we have $t /(1-t) \geq 0 /(1-t)=0$. So $r \in[0, \infty)$, and now $f(r)=r /(1+r)=\frac{t}{1-t} /\left(1+\frac{t}{1-t}\right)=t /((1-t)+t)=t$, as required. (This also shows that the inverse function $f^{-1}:[0,1) \rightarrow[0, \infty)$ is given by the formula $f^{-1}(t)=t /(1-t)$.)
Let $x, y \in X$. Then $D(x, y)=d(x, y) /(1+d(x, y))=f(d(x, y)) \in[0,1)$. So $D(x, y)<1$ for all $x, y \in X$.
Let B be any open ball in (X, d). That is, there exist some $a \in X$ and $r>0$ such that $B=B_{d}(a, r)=\{x \in X \mid d(a, x)<r\}$. We shall show that B is an open ball in (X, D) by showing that $B_{d}(a, r)=B_{D}(a, f(r))$. Now if $x \in B_{d}(a, r)$ then $d(a, x)<r$, and, since f is strictly increasing, $f(d(a, x))<f(r)$. But $f(d(a, x))=D(a, x)$, by the definition of D; so $D(a, x)<f(r)$, showing that $x \in B_{D}(a, f(r))$. This holds for all $x \in B_{d}(a, r) ;$ so $B_{d}(a, r) \subseteq B_{D}(a, f(r))$. On the other hand, suppose that $x \notin B_{d}(a, r)$. Then $d(a, x) \geq r$, and, as f is strictly increasing, $D(a, x)=f(d(a, x)) \geq f(r)$, showing that $x \notin B_{D}(a, f(r))$. So $x \in B_{d}(a, r)$ if and only if $x \in B_{D}(a, f(r))$. So $B_{d}(a, r)=B_{D}(a, f(r))$, as required. Since $B=B_{d}(a, r)$ was an arbitrary open ball in (X, d) we have shown that every open ball of (X, d) is an open ball of (X, D).
Now let B^{\prime} be an arbitrary open ball in (X, D) such that $B^{\prime} \neq X$. We have $B^{\prime}=B_{D}(a, t)$ for some $t>0$. If $t \geq 1$ then for all $x \in X$ we have that $D(a, x)<1 \leq t$, and so $x \in B^{\prime}$. This shows that B^{\prime} is the whole of X, contrary to the choice of B^{\prime}. So we are left with the case $t \in(0,1)$. Since f is a bijection from $[0, \infty)$ to $[0,1)$-and $f(0)=0$-it follows that there exists $r \in(0, \infty)$ with $f(r)=t$. As shown above, in this situation $B_{d}(a, r)=B_{D}(a, f(r))=B_{D}(a, t)=B^{\prime}$. Since B^{\prime} was an arbitrary open ball in (X, D) different from X, we have shown that every open ball in (X, D) except X is an open ball in (X, d).
4. Let X be the set of all positive integers, and for each $n \in X$ define $v(n)$ to be the largest power of 2 that is a factor of n. (Thus, for example, $v(12)=4$ and $v(7)=1$.) For $n, m \in X$ define

$$
d(n, m)= \begin{cases}0 & \text { if } n=m \\ \frac{1}{v(|n-m|)} & \text { if } n \neq m\end{cases}
$$

Is d a metric on X ?

Solution.

It is a metric. To show this it is sufficient (and necessary) to show that (M1), (M2) and (M3) are satisfied.

Since $|n-m|=|m-n|$ it follows that

$$
d(n, m)=\frac{1}{v(|n-m|)}=\frac{1}{v(|m-n|)}=d(m, n)
$$

for all $m, n \in X$ with $m \neq n$. Also $v(k)>0$ for every positive integer k, and so $d(n, m)=1 / v(|n-m|)>0$ for all $n, m \in X$ with $n \neq m$. If $m=n$ then obviously $d(m, n)=d(n, m)$, and $d(m, n)=0$ by definition. So $d(m, n)=d(n, m) \geq 0$ for all $m, n \in X$. So (M1) holds.
We have just observed that $d(m, n)=0$ if $m=n$ and $d(m, n)>0$ if $m \neq n$; so $d(m, n)=0$ if and only if $m=n$. That is, (M2) holds.
It remains to check (M3), the triangle inequality. Let m, n and l be arbitrary elements of X. We shall show that

$$
d(l, m)+d(l, n) \geq d(m, n)
$$

Note that if $l=m$ this becomes $d(m, m)+d(m, n) \geq d(m, n)$, which is trivial since $d(m, m)=0$. Likewise if $l=n$ it becomes $d(n, m)+d(n, n) \geq d(m, n)$, which is also trivial since $d(n, n)=0$ and $d(n, m)=d(m, n)$. Furthermore, if $m=n$ it becomes $d(l, m)+d(l, m) \geq d(m, m)$, and this is trivial too since $d(l, m) \geq 0=d(m, m)$. So we may assume that l, m and n are all distinct.
By the unique factorization theorem for integers, every nonzero integer k can be uniquely written in the form $k=k_{1} k_{2}$, where k_{1} and k_{2} are integers with k_{1} a power of 2 and k_{2} odd. (Here k_{2} is positive if and only if k is.) The number k_{1} is then the largest power of 2 that is a factor of k. So, write $m-l=k_{1} k_{2}$ and $l-n=h_{1} h_{2}$, where k_{2}, h_{2} are odd and $k_{1}=2^{a}$ and $h_{1}=2^{b}$ are powers of 2 . Then $|l-m|=k_{1}\left|k_{2}\right|$ and $|l-n|=h_{1}\left|h_{2}\right|$, and so $v(|l-m|)=k_{1}$ and $v(|l-n|)=h_{1}$. Thus

$$
\begin{equation*}
d(l, m)=\frac{1}{k_{1}}+\frac{1}{h_{1}}=\frac{1}{2^{a}}+\frac{1}{2^{b}} \geq \frac{1}{2^{c}} \tag{*}
\end{equation*}
$$

where $c=\min \{a, b\}$. Now we have

$$
m-n=(m-l)+(l-n)=2^{a} k_{2}+2^{b} h_{2}=2^{c}\left(2^{a-c} k_{2}+2^{b-c} h_{2}\right),
$$

and $\left(2^{a-c} k_{2}+2^{b-c} h_{2}\right)$ is an integer since $a \geq c$ and $b \geq c$. It follows that the largest power of 2 that is a factor of $|m-n|$ is greater than or equal to 2^{c}. Thus

$$
d(m, n)=\frac{1}{v(|m-n|)} \leq \frac{1}{2^{c}} \leq d(l, m)+d(l, n)
$$

by $(*)$, as required.

