Metric Spaces

2000

Assignment 2

1. Let (X, d) and (Y, d') be metric spaces, and $f: X \to Y$ a function. Prove that f is continuous at the point $a \in X$ if and only if for all sequences $(x_n)_{n=0}^{\infty}$ in X, if $\lim_{n \to \infty} x_n = a$ then $\lim_{n \to \infty} f(x_n) = f(a)$.

Solution.

Suppose that f is continuous at a. Let $\varepsilon > 0$ be arbitrary. By continuity of f at a, there exists a $\delta > 0$ such that $d'(f(x), f(a)) < \varepsilon$ whenever $d(x, a) < \delta$. Since $x_n \to a$ and $n \to \infty$, there exists a positive integer N such that $d(x_n, a) < \delta$ whenever n > N. Now whenever n > N we have $d(x_n, a) < \delta$, and hence $d'(f(x_n), f(a)) < \varepsilon$. Since ε was arbitrary, we have shown, as required, that for all $\varepsilon > 0$ there exists an N such that $d'(f(x_n), f(a)) < \varepsilon$ whenever n > N.

Conversely, suppose that f is not continuous at a. Then we may choose an $\varepsilon > 0$ such that for all $\delta > 0$ there exists $x \in X$ with $d(x, a) < \delta$ and $d'(f(x), f(a)) \ge \varepsilon$. Applying this with $\delta = 1/n$, we conclude that for each positive integer n we may choose $x_n \in X$ with $d(x_n, a) < 1/n$ and $d'(f(x_n), f(a)) \ge \varepsilon$. Since $0 \le d(x_n, a) < 1/n \to 0$ as $n \to \infty$, we have that $x_n \to a$ as $n \to \infty$; however, it is not true that $f(x_n) \to f(a)$ as $n \to \infty$, since there is no value of n such that $d'(f(x_n), f(a)) < \varepsilon$.

- **2.** Let X and Y be topological spaces and $f: X \to Y$ a function. Show that the following two conditions are equivalent:
 - (a) For all $A \subseteq X$, if A is open in X then f(A) is open in Y.
 - (b) For all $A \subseteq X$ the inclusion $f(\operatorname{Int} A) \subseteq \operatorname{Int}(f(A))$ holds.

Solution.

Suppose that (a) holds, and let $A \subseteq X$ be arbitrary. Then Int A is an open subset of X, and so by (a) it follows that f(Int A) is open in Y. Furthermore, Int $A \subseteq A$, and so $f(\text{Int } A) \subseteq f(A)$. Thus f(Int A) is an open set contained in the subset f(A) of Y. Hence

$$f(\operatorname{Int} A) \subseteq \bigcup \{ U \mid U \text{ is open and } U \subseteq f(A) \} = \operatorname{Int}(f(A)),$$

and since A was an arbitrary subset of X this shows that (b) holds.

Conversely, suppose that (b) holds, and let A be an arbitrary open subset of X. Then A = Int A, and so by (b),

$$f(A) = f(\operatorname{Int} A) \subseteq \operatorname{Int} f(A).$$

The reverse inclusion, $\operatorname{Int} f(A) \subseteq A$, is immediate from the definition of the interior of a set. So $f(A) = \operatorname{Int} f(A)$, and so f(A) is open. Since A was an arbitrary open subset of X this shows that (a) holds.

3. Show that the function $\cos: \mathbb{R} \to \mathbb{R}$ is not a contraction mapping, but its twofold composite $\cos^{(2)}$ is. (The metric is understood to be the usual metric on \mathbb{R} .) Use a calculator to find a solution of $x = \cos x$ correct to 4 decimals. (No proof required for this last bit, and not many marks awarded either!)

Solution.

Suppose that \cos is a contraction mapping. Then there is a K < 1 such that $|\cos x - \cos y| \le K|x - y|$ for all $x, y \in \mathbb{R}$, and so

$$\left|\frac{\cos x - \cos y}{x - y}\right| \le K < 1$$

whenever $x \neq y$. But if we keep y fixed and let x approach y then the ratio $(\cos x - \cos y)/(x - y)$ approaches $-\sin y$, the derivative of $\cos x$ the point y. So the above inequality gives $|\sin y| \leq K < 1$, which is false for some values of y. So $\cos x$ is not a contraction mapping.

Since $\frac{d}{dx}(\cos(\cos x)) = (\sin(\cos x))\sin x$, the Mean Value Theorem tells us that for all $a, b \in \mathbb{R}$ there is a $c \in [a, b]$ (or [b, a] if b < a) such that

$$\cos^{(2)} a - \cos^{(2)} b = (a - b)(\sin(\cos c))\sin c.$$

Now $|\cos c| \leq 1$, and since sin is increasing on the interval [-1,1] (since $1 < \pi/2$) we deduce that $|\sin(\cos c)| \leq \sin 1$, and so

$$|\sin(\cos c)\sin c| \le (\sin 1)|\sin c| \le \sin 1,$$

irrespective of the values of a and b. So for all $a, b \in \mathbb{R}$,

$$|\cos^{(2)} a - \cos^{(2)} b| \le (\sin 1)|a - b|,$$

which shows that $\cos^{(2)}$ is a contraction mapping, since $\sin 1 < 1$.

Since $\cos x$ takes the value 1 at x = 0 and 0 at $x = \pi/2$, it seems that the graphs of y = x and $y = \cos x$ must cross reasonably near to x = 0.7. Putting $x_0 = 0.7$ and $x_i = \cos(x_{i-1})$ for all positive integers *i*, we find after a few iterations that 0.7391 is a good approximation to the fixed point.

4. Find metric spaces (X, d_X) and (Y, d_Y) and a function $f: X \to Y$ such that f is uniformly continuous and bijective, (X, d_X) is complete and (Y, d_Y) is not complete. (Modify an example from one of the the tutorial sheets.)

Solution.

Let $X = \mathbb{R}$ and $Y = (-\pi/2, \pi/2)$, a subspace of \mathbb{R} . (The metrics d_X and d_Y are the usual ones.) The function arctan is a uniformly continuous bijection

from \mathbb{R} to $(-\pi/2, \pi/2)$. Indeed, since the derivative of $\arctan x$ is $1/(1 + x^2)$, the Mean Value Theorem tells us that for all $x, y \in \mathbb{R}$ there is a $c \in \mathbb{R}$ such that

 $\arctan x - \arctan y = (x - y)(1 + c^2)^{-1},$

and it follows that for all $\varepsilon > 0$ if $|x - y| < \varepsilon$ then $|\arctan x - \arctan y| < \varepsilon$. (So the definition of uniform continuity holds with δ chosen to equal ε .) Since arctan is strictly increasing it is injective, and since it is continuous and approaches $\pi/2$ as $x \to \infty$ and $-\pi/2$ as $x \to -\infty$, it maps \mathbb{R} to $(-\pi/2, \pi/2)$ surjectively. We know from lectures that $X = \mathbb{R}$ is complete, whereas Y is not, since $(-\pi/2, \pi/2)$ is not closed as a subset of \mathbb{R} .

5. Let (X, d) be a complete metric space and $f: X \to X$ a function. Suppose that for some positive integer r the r-fold composite function $f^{(r)}$ (defined by $f^{(r)}(x) = f(f(f(...f(x)...)))$, where there are r f's on the right-hand side) is a contraction mapping. Let x be any point of X, and let $(x_n)_{n=1}^{\infty}$ be the sequence defined by $x_0 = x$ and $x_i = f(x_{i-1})$ for all positive integers i. Prove that $(x_n)_{n=1}^{\infty}$ converges in X. (You may use the fact, proved in lectures, that this is true in the case r = 1, or use the r = 1 proof as a guide to the construction of a general proof.)

Solution.

There exists a positive number K < 1 such that $d(f^{(r)}(x), f^{(r)}(y)) \leq K d(x, y)$ for all $x, y \in X$. Since $f^{(r)}(x_i) = x_{r+i}$ (for each nonnegative integer *i*) it follows that

$$d(x_{nr+i}, x_{(n+1)r+i}) = d(f^{(r)}(x_{(n-1)r+i}), f^{(r)}(x_{nr+i}) \le Kd(x_{(n-1)r+i}, x_{nr+i}),$$

and iterating this yields

$$d(x_{nr+i}, x_{(n+1)r+i}) \leq Kd(x_{(n-1)r+i}, x_{nr+i})$$

$$\leq K^2 d(x_{(n-2)r+i}, x_{(n-1)r+i})$$

$$\vdots$$

$$\leq K^n d(x_i, x_{r+i}),$$

where n is any positive integer. Now if $s, t \in \mathbb{Z}^+$ with s < t, and if $i \in \{0, 1, \ldots, r-1\}$, then, by the triangle inequality,

$$d(x_{sr+i}, x_{tr+i}) \leq \sum_{j=0}^{t-s-1} d(x_{(s+j)r+i}, x_{(s+j+1)r+i})$$
$$\leq \sum_{j=1}^{t-s} K^{s+j} d(x_i, x_{r+i})$$
$$= \frac{K^s}{1-K} d(x_i, x_{r+i}) \leq \frac{K^s M}{1-K},$$

where $M = \max\{d(x_0, x_r), d(x_1, x_{r+1}), d(x_2, x_{r+2}), \dots, d(x_{r-1}, x_{2r-1})\}$. We also have, for all nonnegative integers p, q,

$$d(x_{r+p}, x_{r+q}) = d(f^{(r)}(x_p), f^{(r)}(x_q)) \le K d(x_p, x_q),$$

and so it follows that for all $i, j \in \{0, 1, ..., r-1\}$ and all positive integers s,

$$d(x_{sr+i}, x_{sr+j}) \le K d(x_{(s-1)r+i}, x_{(s-1)r+j}) \le \cdots$$

$$\cdots \le K^{s-1} d(x_{r+i}, x_{r+j}) \le K^s d(x_i, x_j) \le K^s P$$

where $P = \max\{ d(x_i, x_j) \mid i, j \in \{0, 1, \dots, r-1\} \}.$

Given $\varepsilon > 0$, choose s large enough so that $K^s M/(1-K)$ and $K^s P$ are both less than $\varepsilon/3$, and put N = sr. Let n, m > N be arbitrary. Let $i, j \in \{0, 1, \ldots, r-1\}$ be the remainders obtained on dividing m, n by r, so that m = tr + i and n = ur + j for some integers $t, u \ge s$. Then

$$\begin{aligned} d(x_m, x_n) &\leq d(x_{tr+i}, x_{sr+i}) + d(x_{sr+i}, x_{sr+j}) + d(x_{sr+j}, x_{ur+j}) \\ &\leq \frac{K^s M}{1 - K} + K^s P + \frac{K^s M}{1 - K} \\ &\leq \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon \end{aligned}$$

Hence $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence, and hence convergent since X is complete.

Alternatively, since $f^{(r)}$ is a contraction mapping, the proof given in lectures shows that, for each $i \in \{0, 1, \ldots, r-1\}$, the sequence $(x_{nr+i})_{n=1}^{\infty}$ converges in X, the limit x being the unique fixed point of the function $f^{(r)}$. So, given $\varepsilon > 0$, there exists an integer n_i such that $d(x_{nr+i}, x) < \varepsilon$ for all $n > n_i$. Now put $N = \max\{n_i r + i \mid 0 \le i < r\}$. Let n be any integer greater than N. Choosing $i \in \{0, 1, \ldots, r-1\}$ such that n - i is a multiple of r, we have n = mr + i for some m, and $m > n_i$ since n > N. So $d(x_n, x) = d(x_{mr+i}, x) < \varepsilon$. Hence $\lim_{n \to \infty} x_n = x$.