The University of Sydney
Pure Mathematics 3901

Assignment 2

1. Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces, and $f: X \rightarrow Y$ a function. Prove that f is continuous at the point $a \in X$ if and only if for all sequences $\left(x_{n}\right)_{n=0}^{\infty}$ in X, if $\lim _{n \rightarrow \infty} x_{n}=a$ then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.

Solution.

Suppose that f is continuous at a. Let $\varepsilon>0$ be arbitrary. By continuity of f at a, there exists a $\delta>0$ such that $d^{\prime}(f(x), f(a))<\varepsilon$ whenever $d(x, a)<\delta$. Since $x_{n} \rightarrow a$ and $n \rightarrow \infty$, there exists a positive integer N such that $d\left(x_{n}, a\right)<\delta$ whenever $n>N$. Now whenever $n>N$ we have $d\left(x_{n}, a\right)<\delta$, and hence $d^{\prime}\left(f\left(x_{n}\right), f(a)\right)<\varepsilon$. Since ε was arbitrary, we have shown, as required, that for all $\varepsilon>0$ there exists an N such that $d^{\prime}\left(f\left(x_{n}\right), f(a)\right)<\varepsilon$ whenever $n>N$.
Conversely, suppose that f is not continuous at a. Then we may choose an $\varepsilon>0$ such that for all $\delta>0$ there exists $x \in X$ with $d(x, a)<\delta$ and $d^{\prime}(f(x), f(a)) \geq \varepsilon$. Applying this with $\delta=1 / n$, we conclude that for each positive integer n we may choose $x_{n} \in X$ with $d\left(x_{n}, a\right)<1 / n$ and $d^{\prime}\left(f\left(x_{n}\right), f(a)\right) \geq \varepsilon$. Since $0 \leq d\left(x_{n}, a\right)<1 / n \rightarrow 0$ as $n \rightarrow \infty$, we have that $x_{n} \rightarrow a$ as $n \rightarrow \infty$; however, it is not true that $f\left(x_{n}\right) \rightarrow f(a)$ as $n \rightarrow \infty$, since there is no value of n such that $d^{\prime}\left(f\left(x_{n}\right), f(a)\right)<\varepsilon$.
2. Let X and Y be topological spaces and $f: X \rightarrow Y$ a function. Show that the following two conditions are equivalent:
(a) For all $A \subseteq X$, if A is open in X then $f(A)$ is open in Y.
(b) For all $A \subseteq X$ the inclusion $f(\operatorname{Int} A) \subseteq \operatorname{Int}(f(A))$ holds.

Solution.

Suppose that (a) holds, and let $A \subseteq X$ be arbitrary. Then $\operatorname{Int} A$ is an open subset of X, and so by (a) it follows that $f(\operatorname{Int} A)$ is open in Y. Furthermore, $\operatorname{Int} A \subseteq A$, and so $f(\operatorname{Int} A) \subseteq f(A)$. Thus $f(\operatorname{Int} A)$ is an open set contained in the subset $f(A)$ of Y. Hence

$$
f(\operatorname{Int} A) \subseteq \bigcup\{U \mid U \text { is open and } U \subseteq f(A)\}=\operatorname{Int}(f(A))
$$

and since A was an arbitrary subset of X this shows that (b) holds.
Conversely, suppose that (b) holds, and let A be an arbitrary open subset of X. Then $A=\operatorname{Int} A$, and so by (b),

$$
f(A)=f(\operatorname{Int} A) \subseteq \operatorname{Int} f(A)
$$

The reverse inclusion, $\operatorname{Int} f(A) \subseteq A$, is immediate from the definition of the interior of a set. So $f(A)=\operatorname{Int} f(A)$, and so $f(A)$ is open. Since A was an arbitrary open subset of X this shows that (a) holds.
3. Show that the function cos: $\mathbb{R} \rightarrow \mathbb{R}$ is not a contraction mapping, but its twofold composite $\cos ^{(2)}$ is. (The metric is understood to be the usual metric on \mathbb{R}.) Use a calculator to find a solution of $x=\cos x$ correct to 4 decimals. (No proof required for this last bit, and not many marks awarded either!)

Solution.

Suppose that cos is a contraction mapping. Then there is a $K<1$ such that $|\cos x-\cos y| \leq K|x-y|$ for all $x, y \in \mathbb{R}$, and so

$$
\left|\frac{\cos x-\cos y}{x-y}\right| \leq K<1
$$

whenever $x \neq y$. But if we keep y fixed and let x approach y then the ratio $(\cos x-\cos y) /(x-y)$ approaches $-\sin y$, the derivative of \cos at the point y. So the above inequality gives $|\sin y| \leq K<1$, which is false for some values of y. So cos is not a contraction mapping.
Since $\frac{d}{d x}(\cos (\cos x))=(\sin (\cos x)) \sin x$, the Mean Value Theorem tells us that for all $a, b \in \mathbb{R}$ there is a $c \in[a, b]$ (or $[b, a]$ if $b<a$) such that

$$
\cos ^{(2)} a-\cos ^{(2)} b=(a-b)(\sin (\cos c)) \sin c
$$

Now $|\cos c| \leq 1$, and since sin is increasing on the interval $[-1,1]$ (since $1<\pi / 2)$ we deduce that $|\sin (\cos c)| \leq \sin 1$, and so

$$
|\sin (\cos c) \sin c| \leq(\sin 1)|\sin c| \leq \sin 1
$$

irrespective of the values of a and b. So for all $a, b \in \mathbb{R}$,

$$
\left|\cos ^{(2)} a-\cos ^{(2)} b\right| \leq(\sin 1)|a-b|
$$

which shows that $\cos ^{(2)}$ is a contraction mapping, $\operatorname{since} \sin 1<1$.
Since $\cos x$ takes the value 1 at $x=0$ and 0 at $x=\pi / 2$, it seems that the graphs of $y=x$ and $y=\cos x$ must cross reasonably near to $x=0.7$. Putting $x_{0}=0.7$ and $x_{i}=\cos \left(x_{i-1}\right)$ for all positive integers i, we find after a few iterations that 0.7391 is a good approximation to the fixed point.
4. Find metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ and a function $f: X \rightarrow Y$ such that f is uniformly continuous and bijective, $\left(X, d_{X}\right)$ is complete and $\left(Y, d_{Y}\right)$ is not complete. (Modify an example from one of the the tutorial sheets.)

Solution.

Let $X=\mathbb{R}$ and $Y=(-\pi / 2, \pi / 2)$, a subspace of \mathbb{R}. (The metrics d_{X} and d_{Y} are the usual ones.) The function arctan is a uniformly continuous bijection
from \mathbb{R} to $(-\pi / 2, \pi / 2)$. Indeed, since the derivative of $\arctan x$ is $1 /\left(1+x^{2}\right)$, the Mean Value Theorem tells us that for all $x, y \in \mathbb{R}$ there is a $c \in \mathbb{R}$ such that

$$
\arctan x-\arctan y=(x-y)\left(1+c^{2}\right)^{-1}
$$

and it follows that for all $\varepsilon>0$ if $|x-y|<\varepsilon$ then $|\arctan x-\arctan y|<\varepsilon$. (So the definition of uniform continuity holds with δ chosen to equal ε.) Since arctan is strictly increasing it is injective, and since it is continuous and approaches $\pi / 2$ as $x \rightarrow \infty$ and $-\pi / 2$ as $x \rightarrow-\infty$, it maps \mathbb{R} to $(-\pi / 2, \pi / 2)$ surjectively. We know from lectures that $X=\mathbb{R}$ is complete, whereas Y is not, since $(-\pi / 2, \pi / 2)$ is not closed as a subset of \mathbb{R}.
5. Let (X, d) be a complete metric space and $f: X \rightarrow X$ a function. Suppose that for some positive integer r the r-fold composite function $f^{(r)}$ (defined by $f^{(r)}(x)=f(f(f(\ldots f(x) \ldots)))$, where there are $r f^{\prime}$'s on the right-hand side) is a contraction mapping. Let x be any point of X, and let $\left(x_{n}\right)_{n=1}^{\infty}$ be the sequence defined by $x_{0}=x$ and $x_{i}=f\left(x_{i-1}\right)$ for all positive integers i. Prove that $\left(x_{n}\right)_{n=1}^{\infty}$ converges in X. (You may use the fact, proved in lectures, that this is true in the case $r=1$, or use the $r=1$ proof as a guide to the construction of a general proof.)

Solution.

There exists a positive number $K<1$ such that $d\left(f^{(r)}(x), f^{(r)}(y)\right) \leq K d(x, y)$ for all $x, y \in X$. Since $f^{(r)}\left(x_{i}\right)=x_{r+i}$ (for each nonnegative integer i) it follows that

$$
d\left(x_{n r+i}, x_{(n+1) r+i}\right)=d\left(f^{(r)}\left(x_{(n-1) r+i}\right), f^{(r)}\left(x_{n r+i}\right) \leq K d\left(x_{(n-1) r+i}, x_{n r+i}\right)\right.
$$

and iterating this yields

$$
\begin{aligned}
d\left(x_{n r+i}, x_{(n+1) r+i}\right) & \leq K d\left(x_{(n-1) r+i}, x_{n r+i}\right) \\
& \leq K^{2} d\left(x_{(n-2) r+i}, x_{(n-1) r+i}\right) \\
& \vdots \\
& \leq K^{n} d\left(x_{i}, x_{r+i}\right)
\end{aligned}
$$

where n is any positive integer. Now if $s, t \in \mathbb{Z}^{+}$with $s<t$, and if $i \in\{0,1, \ldots, r-1\}$, then, by the triangle inequality,

$$
\begin{aligned}
d\left(x_{s r+i}, x_{t r+i}\right) & \leq \sum_{j=0}^{t-s-1} d\left(x_{(s+j) r+i}, x_{(s+j+1) r+i}\right) \\
& \leq \sum_{j=1}^{t-s} K^{s+j} d\left(x_{i}, x_{r+i}\right) \\
& =\frac{K^{s}}{1-K} d\left(x_{i}, x_{r+i}\right) \leq \frac{K^{s} M}{1-K}
\end{aligned}
$$

where $M=\max \left\{d\left(x_{0}, x_{r}\right), d\left(x_{1}, x_{r+1}\right), d\left(x_{2}, x_{r+2}\right), \ldots, d\left(x_{r-1}, x_{2 r-1}\right)\right\}$. We also have, for all nonnegative integers p, q,

$$
d\left(x_{r+p}, x_{r+q}\right)=d\left(f^{(r)}\left(x_{p}\right), f^{(r)}\left(x_{q}\right)\right) \leq K d\left(x_{p}, x_{q}\right)
$$

and so it follows that for all $i, j \in\{0,1, \ldots, r-1\}$ and all positive integers s,

$$
\begin{aligned}
d\left(x_{s r+i}, x_{s r+j}\right) \leq K d & \left(x_{(s-1) r+i}, x_{(s-1) r+j}\right) \leq \\
& \cdots \leq K^{s-1} d\left(x_{r+i}, x_{r+j}\right) \leq K^{s} d\left(x_{i}, x_{j}\right) \leq K^{s} P
\end{aligned}
$$

where $P=\max \left\{d\left(x_{i}, x_{j}\right) \mid i, j \in\{0,1, \ldots, r-1\}\right\}$.
Given $\varepsilon>0$, choose s large enough so that $K^{s} M /(1-K)$ and $K^{s} P$ are both less than $\varepsilon / 3$, and put $N=s r$. Let $n, m>N$ be arbitrary. Let $i, j \in\{0,1, \ldots, r-1\}$ be the remainders obtained on dividing m, n by r, so that $m=t r+i$ and $n=u r+j$ for some integers $t, u \geq s$. Then

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{t r+i}, x_{s r+i}\right)+d\left(x_{s r+i}, x_{s r+j}\right)+d\left(x_{s r+j}, x_{u r+j}\right) \\
& \leq \frac{K^{s} M}{1-K}+K^{s} P+\frac{K^{s} M}{1-K} \\
& \leq \varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
\end{aligned}
$$

Hence $\left(x_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence, and hence convergent since X is complete.

Alternatively, since $f^{(r)}$ is a contraction mapping, the proof given in lectures shows that, for each $i \in\{0,1, \ldots, r-1\}$, the sequence $\left(x_{n r+i}\right)_{n=1}^{\infty}$ converges in X, the limit x being the unique fixed point of the function $f^{(r)}$. So, given $\varepsilon>0$, there exists an integer n_{i} such that $d\left(x_{n r+i}, x\right)<\varepsilon$ for all $n>n_{i}$. Now put $N=\max \left\{n_{i} r+i \mid 0 \leq i<r\right\}$. Let n be any integer greater than N. Choosing $i \in\{0,1, \ldots, r-1\}$ such that $n-i$ is a multiple of r, we have $n=m r+i$ for some m, and $m>n_{i}$ since $n>N$. So $d\left(x_{n}, x\right)=d\left(x_{m r+i}, x\right)<\varepsilon$. Hence $\lim _{n \rightarrow \infty} x_{n}=x$.

