
Metric Spaces Lecture 2

The definition of continuity (as stated in Lecture 1 for functions from R2 to R2)
makes sense for functions from any metric space (X, d) to any other metric space (Y, d′):

A function f :X → Y is continuous at the point a ∈ X if for every real number
ε > 0 there exists a real number δ > 0 such that the following condition holds:
for all x ∈ X, if d(x, a) < δ then d′(f(x), f(a)) < ε.

Using the concept of “open ball”, this can be rephrased as follows:
A function f :X → Y is continuous at a ∈ X if and only if for every open ball B
with centre at f(a) there is an open ball C with centre a such that f(C) ⊆ B.

Note that the condition f(C) ⊆ B is equivalent to C ⊆ f−1(B). (This is easy to prove:
it follows immediately from the definitions of “image” and “preimage”.)

The following proposition generalizes the above statement slightly.
Proposition. Let (X, d), (Y, d′) be metric spaces and f :X → Y a function, and let
a ∈ X. Then f is continuous at a if and only if for every open subset U of Y with
a ∈ f−1(U) there is an open ball C with centre a such that C ⊆ f−1(U).
Proof. Suppose first that f satisfies the stated condition; we shall show that f is contin-
uous at a.

Let ε > 0. Then U = B(f(a), ε) is an open subset of Y , and a ∈ f−1(U) (since
f(a) ∈ U). So by the given condition there exists an open ball C centred at a such that
C ⊆ f−1(U). Let δ be the radius of C (so that C = B(a, δ)). Now if x is an arbitrary
element of X satisfying d(x, a) < δ, then

x ∈ C ⊆ f−1(U),

whence f(x) ∈ U = B(f(a), ε), which means that d′(f(x), f(a)) < ε.
Thus we have have shown that for every ε > 0 there exists δ > 0 such that, for all

x ∈ X, if d(x, a) < δ then d(f(x), f(a)) < ε. That is, we have shown that f is continuous
at a.

Conversely, suppose that f is continuous at a, and let U be an open subset of Y such
that a ∈ f−1(U). Since U is open and f(a) ∈ U there is an ε > 0 such that B(f(a), ε) ⊆ U .
Since f is continuous at a there exists δ > 0 such that, for all x ∈ X, if d(x, a) < δ then
d′(f(x), f(a)) < ε. Now put C = B(a, δ), an open ball centred at a. For all x ∈ C we
have d(x, a) < δ, which gives d′(f(x), f(a)) < ε, and hence f(x) ∈ B(f(a), ε) ⊆ U . So
x ∈ f−1(U) whenever x ∈ C; in other words, C ⊆ f−1(U). Thus we have shown that
for every open set U containing f(a) there is an open ball centred at a and contained in
f−1(U), as required. �

In view of the definition of the interior of a set, we can restate the above result as
follows.
Corollary. The function f :X → Y is continuous at a if and only if, for all open subsets
U of Y , if a ∈ f−1(U) then a ∈ Int(f−1(U)).

This enables us to now give a concise characterization of continuous functions.
Corollary. If (X, d) and (Y, d′) are metric spaces then a function f :X → Y is continuous
if and only if f−1(U) is an open subset of X whenever U is an open subset of Y .
Proof. To say that f is continuous is to say that it is continuous at all points a ∈ X.
By the previous corollary, this holds if and only if for all open U ⊂ Y and all a ∈ X, if
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a ∈ f−1(U) then a ∈ Int(f−1(U)). That is, for every open U ⊆ Y , all points of f−1(U)
are interior points. But to say that all points of f−1(U) are interior points is to say that
f−1(U) is open. �

Some inequalities
Suppose that 0 ≤ θ ≤ 1. If (x0, y0) and (x1, y1) are points in R2 then the point (x, y)

defined by
x = θx0 + (1− θ)x1

y = θy0 + (1− θ)y1

lies on the line segment joining (x0, y0) and (x1, y1). Now the graph of y = lnx is concave
downwards; so if (x0, y0) and (x1, y1) are on this graph then (x, y) will be below it; that
is, y ≤ lnx. In other words, if a, b > 0 and we define

x0 = a
y0 = ln a

and x1 = b
y1 = ln b

so that
x = θa + (1− θ)b
y = θ(ln a) + (1− θ)(ln b)

then it follows that

θ(ln a) + (1− θ)(ln b) ≤ ln(θa + (1− θ)b).

Taking exponentials of both sides, using the fact that ex is monotone increasing, it follows
that

eθ(ln a)+(1−θ)(ln b) ≤ θa + (1− θ)b.

But eθ(ln a)+(1−θ)(ln b) = eθ(ln a)e(1−θ)(ln b) = aθb1−θ; so we have shown that

aθb1−θ ≤ θa + (1− θ)b. (∗)

for all a, b > 0. The same in fact holds for a, b ≥ 0, since if either a or b is zero then the
left hand side is zero, while the right hand side remains nonnegative.

Hölder’s Inequality. Let p > 1 and put q = p/(p − 1) (so that q > 1 and 1
p + 1

q = 1).
Let ak, bk be arbitrary complex numbers, where k runs from 1 to n. Then

n∑
k=1

|akbk| ≤
( n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

.

Proof. Let ck = |ak|p and dk = |bk|q, and put C =
∑n

k=1 ck and D =
∑n

k=1 dk. Put
θ = 1/p, so that 1 − θ = 1/q, and apply (∗) with ck/C in place of a and dk/D in place
of b. We obtain

(ck/C)1/p(dk/D)1/q ≤ (1/p)(ck/C) + (1/q)(dk/D).
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Summing from k = 1 to n gives
n∑

k=1

c
1/p
k d

1/q
k

C1/pD1/q
≤ 1

pC

n∑
k=1

ck +
1

qD

n∑
k=1

dk

=
1
p

+
1
q

= 1.

Hence
∑n

k=1 c
1/p
k d

1/q
k ≤ C1/pD1/q; that is,

n∑
k=1

|akbk| ≤
( n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

as required. �

The special case of Hölder’s Inequality in which p = q = 2 is known as Cauchy’s
Inequality.
Minkowski’s Inequality. Let p ≥ 1, and let ak, bk ∈ C be arbitrary. Then( n∑

k=1

|ak + bk|p
)1/p

≤
( n∑

k=1

|ak|p
)1/p

+
( n∑

k=1

|bk|p
)1/p

.

Proof. Since |a+ b| ≤ |a|+ |b| for all complex numbers a and b, it is clear that the result
holds for p = 1. So we assume that p > 1. Put q = p/(p− 1).

For all k from 1 to n we have

(ak + bk)p = ak(ak + bk)p−1 + bk(ak + bk)p−1

and so using standard properties of the modulus function for complex numbers (namely
|ab| = |a||b| and |a + b| ≤ |a|+ |b| for all a, b ∈ C, and |at| = |a|t for all a ∈ C and t ∈ R)
we deduce that

|ak + bk|p ≤ |ak|(|ak + bk|)p−1 + |bk|(|ak + bk|)p−1

for all k. Summing from k = 1 to n, and then applying Hölder’s Inequality to each of the
sums on the right hand side gives

n∑
k=1

|ak + bk|p ≤
n∑

k=1

|ak|(|ak + bk|)p−1 +
n∑

k=1

|bk|(|ak + bk|)p−1

≤
( n∑

k=1

|ak|p
)1/p( n∑

k=1

(|ak + bk|)(p−1)q
)1/q

+
( n∑

k=1

|bk|p
)1/p( n∑

k=1

(|ak + bk|)(p−1)q
)1/q

=

(( n∑
k=1

|ak|p
)1/p

+
( n∑

k=1

|bk|p
)1/p

)( n∑
k=1

(|ak + bk|)p
)1/q

,

where in the last line we have used (p − 1)q = p. Dividing through by the second factor
on the right hand side gives( n∑

k=1

|ak + bk|p
)1−(1/q)

≤
( n∑

k=1

|ak|p
)1/p

+
( n∑

k=1

|bk|p
)1/p

,

which is the required result, since 1− (1/q) = 1/p. �
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