The definition of continuity (as stated in Lecture 1 for functions from $\mathbb{R}^{2}$ to $\mathbb{R}^{2}$ ) makes sense for functions from any metric space $(X, d)$ to any other metric space $\left(Y, d^{\prime}\right)$ :

A function $f: X \rightarrow Y$ is continuous at the point $a \in X$ if for every real number $\varepsilon>0$ there exists a real number $\delta>0$ such that the following condition holds: for all $x \in X$, if $d(x, a)<\delta$ then $d^{\prime}(f(x), f(a))<\varepsilon$.
Using the concept of "open ball", this can be rephrased as follows:
A function $f: X \rightarrow Y$ is continuous at $a \in X$ if and only if for every open ball $B$ with centre at $f(a)$ there is an open ball $C$ with centre $a$ such that $f(C) \subseteq B$.
Note that the condition $f(C) \subseteq B$ is equivalent to $C \subseteq f^{-1}(B)$. (This is easy to prove: it follows immediately from the definitions of "image" and "preimage".)

The following proposition generalizes the above statement slightly.
Proposition. Let $(X, d),\left(Y, d^{\prime}\right)$ be metric spaces and $f: X \rightarrow Y$ a function, and let $a \in X$. Then $f$ is continuous at $a$ if and only if for every open subset $U$ of $Y$ with $a \in f^{-1}(U)$ there is an open ball $C$ with centre a such that $C \subseteq f^{-1}(U)$.
Proof. Suppose first that $f$ satisfies the stated condition; we shall show that $f$ is continuous at $a$.

Let $\varepsilon>0$. Then $U=B(f(a), \varepsilon)$ is an open subset of $Y$, and $a \in f^{-1}(U)$ (since $f(a) \in U)$. So by the given condition there exists an open ball $C$ centred at $a$ such that $C \subseteq f^{-1}(U)$. Let $\delta$ be the radius of $C$ (so that $\left.C=B(a, \delta)\right)$. Now if $x$ is an arbitrary element of $X$ satisfying $d(x, a)<\delta$, then

$$
x \in C \subseteq f^{-1}(U)
$$

whence $f(x) \in U=B(f(a), \varepsilon)$, which means that $d^{\prime}(f(x), f(a))<\varepsilon$.
Thus we have have shown that for every $\varepsilon>0$ there exists $\delta>0$ such that, for all $x \in X$, if $d(x, a)<\delta$ then $d(f(x), f(a))<\varepsilon$. That is, we have shown that $f$ is continuous at $a$.

Conversely, suppose that $f$ is continuous at $a$, and let $U$ be an open subset of $Y$ such that $a \in f^{-1}(U)$. Since $U$ is open and $f(a) \in U$ there is an $\varepsilon>0$ such that $B(f(a), \varepsilon) \subseteq U$. Since $f$ is continuous at $a$ there exists $\delta>0$ such that, for all $x \in X$, if $d(x, a)<\delta$ then $d^{\prime}(f(x), f(a))<\varepsilon$. Now put $C=B(a, \delta)$, an open ball centred at $a$. For all $x \in C$ we have $d(x, a)<\delta$, which gives $d^{\prime}(f(x), f(a))<\varepsilon$, and hence $f(x) \in B(f(a), \varepsilon) \subseteq U$. So $x \in f^{-1}(U)$ whenever $x \in C$; in other words, $C \subseteq f^{-1}(U)$. Thus we have shown that for every open set $U$ containing $f(a)$ there is an open ball centred at $a$ and contained in $f^{-1}(U)$, as required.

In view of the definition of the interior of a set, we can restate the above result as follows.
Corollary. The function $f: X \rightarrow Y$ is continuous at $a$ if and only if, for all open subsets $U$ of $Y$, if $a \in f^{-1}(U)$ then $a \in \operatorname{Int}\left(f^{-1}(U)\right)$.

This enables us to now give a concise characterization of continuous functions.
Corollary. If $(X, d)$ and $\left(Y, d^{\prime}\right)$ are metric spaces then a function $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(U)$ is an open subset of $X$ whenever $U$ is an open subset of $Y$.
Proof. To say that $f$ is continuous is to say that it is continuous at all points $a \in X$. By the previous corollary, this holds if and only if for all open $U \subset Y$ and all $a \in X$, if
$a \in f^{-1}(U)$ then $a \in \operatorname{Int}\left(f^{-1}(U)\right)$. That is, for every open $U \subseteq Y$, all points of $f^{-1}(U)$ are interior points. But to say that all points of $f^{-1}(U)$ are interior points is to say that $f^{-1}(U)$ is open.

## Some inequalities

Suppose that $0 \leq \theta \leq 1$. If $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are points in $\mathbb{R}^{2}$ then the point $(x, y)$ defined by

$$
\begin{aligned}
& x=\theta x_{0}+(1-\theta) x_{1} \\
& y=\theta y_{0}+(1-\theta) y_{1}
\end{aligned}
$$

lies on the line segment joining $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$. Now the graph of $y=\ln x$ is concave downwards; so if $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are on this graph then $(x, y)$ will be below it; that is, $y \leq \ln x$. In other words, if $a, b>0$ and we define

$$
\begin{aligned}
& x_{0}=a \\
& y_{0}=\ln a
\end{aligned} \quad \text { and } \quad \begin{aligned}
& x_{1}=b \\
& y_{1}=\ln b
\end{aligned}
$$

so that

$$
\begin{aligned}
& x=\theta a+(1-\theta) b \\
& y=\theta(\ln a)+(1-\theta)(\ln b)
\end{aligned}
$$

then it follows that

$$
\theta(\ln a)+(1-\theta)(\ln b) \leq \ln (\theta a+(1-\theta) b)
$$

Taking exponentials of both sides, using the fact that $e^{x}$ is monotone increasing, it follows that

$$
e^{\theta(\ln a)+(1-\theta)(\ln b)} \leq \theta a+(1-\theta) b
$$

But $e^{\theta(\ln a)+(1-\theta)(\ln b)}=e^{\theta(\ln a)} e^{(1-\theta)(\ln b)}=a^{\theta} b^{1-\theta}$; so we have shown that

$$
\begin{equation*}
a^{\theta} b^{1-\theta} \leq \theta a+(1-\theta) b \tag{*}
\end{equation*}
$$

for all $a, b>0$. The same in fact holds for $a, b \geq 0$, since if either $a$ or $b$ is zero then the left hand side is zero, while the right hand side remains nonnegative.
Hölder's Inequality. Let $p>1$ and put $q=p /(p-1)$ (so that $q>1$ and $\frac{1}{p}+\frac{1}{q}=1$ ). Let $a_{k}, b_{k}$ be arbitrary complex numbers, where $k$ runs from 1 to $n$. Then

$$
\sum_{k=1}^{n}\left|a_{k} b_{k}\right| \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right)^{1 / q}
$$

Proof. Let $c_{k}=\left|a_{k}\right|^{p}$ and $d_{k}=\left|b_{k}\right|^{q}$, and put $C=\sum_{k=1}^{n} c_{k}$ and $D=\sum_{k=1}^{n} d_{k}$. Put $\theta=1 / p$, so that $1-\theta=1 / q$, and apply ( $*$ ) with $c_{k} / C$ in place of $a$ and $d_{k} / D$ in place of $b$. We obtain

$$
\left(c_{k} / C\right)^{1 / p}\left(d_{k} / D\right)^{1 / q} \leq(1 / p)\left(c_{k} / C\right)+(1 / q)\left(d_{k} / D\right)
$$

Summing from $k=1$ to $n$ gives

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{c_{k}^{1 / p} d_{k}^{1 / q}}{C^{1 / p} D^{1 / q}} & \leq \frac{1}{p C} \sum_{k=1}^{n} c_{k}+\frac{1}{q D} \sum_{k=1}^{n} d_{k} \\
& =\frac{1}{p}+\frac{1}{q}=1 .
\end{aligned}
$$

Hence $\sum_{k=1}^{n} c_{k}^{1 / p} d_{k}^{1 / q} \leq C^{1 / p} D^{1 / q}$; that is,

$$
\sum_{k=1}^{n}\left|a_{k} b_{k}\right| \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right)^{1 / q}
$$

as required.
The special case of Hölder's Inequality in which $p=q=2$ is known as Cauchy's Inequality.
Minkowski's Inequality. Let $p \geq 1$, and let $a_{k}, b_{k} \in C$ be arbitrary. Then

$$
\left(\sum_{k=1}^{n}\left|a_{k}+b_{k}\right|^{p}\right)^{1 / p} \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}+\left(\sum_{k=1}^{n}\left|b_{k}\right|^{p}\right)^{1 / p}
$$

Proof. Since $|a+b| \leq|a|+|b|$ for all complex numbers $a$ and $b$, it is clear that the result holds for $p=1$. So we assume that $p>1$. Put $q=p /(p-1)$.

For all $k$ from 1 to $n$ we have

$$
\left(a_{k}+b_{k}\right)^{p}=a_{k}\left(a_{k}+b_{k}\right)^{p-1}+b_{k}\left(a_{k}+b_{k}\right)^{p-1}
$$

and so using standard properties of the modulus function for complex numbers (namely $|a b|=|a||b|$ and $|a+b| \leq|a|+|b|$ for all $a, b \in \mathbb{C}$, and $\left|a^{t}\right|=|a|^{t}$ for all $a \in \mathbb{C}$ and $t \in \mathbb{R}$ ) we deduce that

$$
\left|a_{k}+b_{k}\right|^{p} \leq\left|a_{k}\right|\left(\left|a_{k}+b_{k}\right|\right)^{p-1}+\left|b_{k}\right|\left(\left|a_{k}+b_{k}\right|\right)^{p-1}
$$

for all $k$. Summing from $k=1$ to $n$, and then applying Hölder's Inequality to each of the sums on the right hand side gives

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|a_{k}+b_{k}\right|^{p} \leq \sum_{k=1}^{n}\left|a_{k}\right|\left|\left(\left|a_{k}+b_{k}\right|\right)^{p-1}+\sum_{k=1}^{n}\right| b_{k} \mid\left(\left|a_{k}+b_{k}\right|\right)^{p-1} \\
& \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{n}\left(\left|a_{k}+b_{k}\right|\right)^{(p-1) q}\right)^{1 / q}+\left(\sum_{k=1}^{n}\left|b_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{n}\left(\left|a_{k}+b_{k}\right|\right)^{(p-1) q}\right)^{1 / q} \\
& =\left(\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}+\left(\sum_{k=1}^{n}\left|b_{k}\right|^{p}\right)^{1 / p}\right)\left(\sum_{k=1}^{n}\left(\left|a_{k}+b_{k}\right|\right)^{p}\right)^{1 / q}
\end{aligned}
$$

where in the last line we have used $(p-1) q=p$. Dividing through by the second factor on the right hand side gives

$$
\left(\sum_{k=1}^{n}\left|a_{k}+b_{k}\right|^{p}\right)^{1-(1 / q)} \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}+\left(\sum_{k=1}^{n}\left|b_{k}\right|^{p}\right)^{1 / p},
$$

which is the required result, since $1-(1 / q)=1 / p$.

