
Metric Spaces Lecture 6

Let (X,U) be a topological space. Recall from Lecture 5 that if A1 and A2 are subsets
of X such that A2 is the complement in X of A2, then the closure of A2 is the complement
of the interior of A1, and the interior of A2 is the complement of the closure of A1. If
A = A1 then A2 = X\A; so this last statement becomes Int(X\A) = X\A.

Proposition. Let A ⊆ X. Then A = {x ∈ X | U ∩A 6= ∅ for all U ∈ U with x ∈ U }.
Proof. The complement in X of {x ∈ X | U ∩A 6= ∅ for all open sets U containing x } is
the set {x ∈ X | U ∩A = ∅ for some open set U containing x }. But since the condition
U ∩A = ∅ is the same as U ⊆ (X \A), this is just the interior of X \A, which (as noted
above) is the complement of A. �

We say that a point x ∈ X is an accumulation point of the subset A of X if
(U \ {x}) ∩ A 6= ∅ for every open neighbourhood U of x. The set of all accumulation
points of A is called the derived set of A, and it is commonly denoted by A′. That is,

A′ = {x ∈ X | (U\{x}) ∩A 6= ∅ for all open neighbourhoods U of x }.

We can think of accumulation points of A as those points x which have elements of A\{x}
arbitrarily close by. Note that an accumulation point of A does not have to itself be a
member of A: it could be in A or in X\A.

Lemma. Let A ⊆ X. Then A′ ⊆ A.

Proof. Let x ∈ A′ be arbitrary. Let U be an open neighbourhood of x. Then, by the
definition of A′, we have (U\{x}) ∩ A 6= ∅; so U ∩ A 6= ∅ (since U\{x} ⊆ U). This holds
for all open neighbourhoods U of x; so x ∈ A (by the proposition above). Since x was an
arbitrary point of A′, it follows that A′ ⊆ A, as claimed. �

Lemma. If x ∈ A and x /∈ A then x ∈ A′.

Proof. Suppose that x ∈ A and x /∈ A, and let U be an open set with x ∈ U . By the
proposition U ∩ A 6= ∅, and so we may choose an element a ∈ U ∩ A. Then a 6= x,
since x /∈ A. So a ∈ U \ {x}, as well as a ∈ A, and so we have shown that for all open
neighbourhoods U of x the intersection (U \ {x}) ∩ A is nonempty. That is, x is an
accumulation point of A. �

Proposition. Let A ⊆ X. Then A = A ∪A′.

Proof. We showed above that A \A ⊆ A′; so A ⊆ A∪A′. For the reverse inclusion, note
first that A ⊆ A, by the definition of A, while A′ ⊆ A by one of our lemmas above. Hence
A ∪A′ ⊆ A, as required. �

If A ⊆ X, we define the frontier or boundary of A to be the set Fr(A) = A \ Int(A).
That is, Fr(A) = A∩(X\Int(A)). We noted above that if B is the complement of A then B
is the complement of Int(A); that is, X \A = X\Int(A). So we obtain Fr(A) = A∩X \A.
The symmetry of this expression shows that the frontier of A is the same as the frontier
of X \ A. We intuitively think of the frontier as being the set of points that are “on the
edge” between A and its complement.

Proposition. If A ⊆ X then the frontier of A consists of those points x ∈ X such
that every open neighbourhood U of x has nonempty intersection with A and nonempty
intersection with X \A.

–1–

Metric Spaces
Lectures given at the University of Sydney for the course Maths 3901, based on notes by K. G. Choo. Copyright 1999. Robert Brian Howlett.



Proof. Since A consists of the points x such that every open U containing x intersects A
nontrivially, and X \A consists of those x such that every open U containing x intersects
X \A nontrivially, Fr(A), being the intersection of A and X \A, consists of those x such
that both these conditions hold. �

A subset A of X is said to be dense if its closure is the whole space X. Now A = X
if and only if every x ∈ X has the property that every open set containing x intersects
A nontrivially. Since every nonempty open set U contains some x ∈ X, it follows that
A = X if and only if every nonempty open set U has nonempty intesection with A. So
we have proved the following result.

Proposition. A subset A of X is dense if and only if A ∩ U 6= ∅ for every non-empty
open set U .

Dense sets are those sets which intersect all nontrivial open sets nontrivially.

A subset A of X is said to be nowhere dense if its closure has empty interior. That
is, A is nowhere dense if and only if Int(A) = ∅.

For example, consider R as a topological space, the topology being determined by
the usual metric on R. If A = { 1/n | n ∈ Z+ } then it is relatively easy to see that 0
is the only accumulation point of A, and hence A = A ∪ {0}. This set contains no open
intervals, hence has no interior points. So A is nowhere dense.

Recall that a metric space is a set X together with a distance function d on X. That
is, d:X ×X → R satisfies d(x, y) = d(y, x) ≥ 0, with d(x, y) = 0 if and only if x = y, and
d(y, z) ≤ d(x, y)+d(x, z) for all x, y, z ∈ X. A topological space is a set X together with a
collection U of subsets of X, such that ∅, X ∈ U and U is closed under finite intersections
and arbitrary unions. The elements of U are called the open sets of the topology.

Let (X, d) be a metric space. For each x ∈ X and each real number ε > 0 the open
ball with centre x and radius ε is defined to be the set Bd(x, ε) consisting of all points
y ∈ X such that d(x, y) < ε. Now define U to be the collection of all subsets U of X that
have the following property:

for all x ∈ U there exists ε > 0 such that Bd(x, ε) ⊆ U . (∗)
As we have seen, (X,U) is then a topological space. So every metric space is a topological
space. Conversely, a topological space (X,U) is said to be metrizable if it is possible to
define a distance function d on X in such a way that U ∈ U if and only if the property (∗)
above is satisfied. Note that if a topological space with at least two elements is metrizable,
the metric d is not unique; for example, in Question 7 of Tutorial 2 we saw how a second
metric d′ can be defined in terms of a given metric d. Even more trivially, one could define
d′(x, y) = 2d(x, y). Two metrics on the same set X are said to be topologically equivalent
if they give rise to the same collection of open sets U .

There are topological spaces that are not metrizable: C2 with the Zariski topology,
for example. Thus the concept of a topological space is weaker than that of a metric space,
in that all metric spaces are topological spaces but not vice versa. Although our primary
interest in this course is in metric spaces, for many of the results it suffices to assume that
we are dealing with a topological space. Where possible we shall phrase proofs in such a
way that they apply in the more general context.

For every positive integer n and real number p ≥ 1 we have defined a metric dp on
the set Cn of all n-tuples of complex numbers. Since Rn is a subset of Cn, the same
definition gives a metric on Rn. For example, when n = 2 the function dp: R2 × R2 → R
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given by
dp((x, y), (x′, y′)) = p

√
|x− x′|p + |y − y′|p

is a metric on R2. Note that in the case p = 2 this is the usual formula for the distance
between two points in the plane. If we let p approach∞ then dp((x, y), (x′, y′)) approaches
d∞((x, y), (x′, y′)), where the function d∞ is defined by

d∞((x, y), (x′, y′)) = max(|x− x′|, |y − y′|).

This is also a metric.
Let a = (0, 0) ∈ R2. The open ball centred at a with radius 1, for the metric dp, is

the set
Bdp

(a, 1) = { (x, y) ∈ R2 | dp((x, y), (0, 0)) < 1 }

= { (x, y) ∈ R2 | p
√
|x|p + |y|p < 1 }

= { (x, y) ∈ R2 | |x|p + |y|p < 1 }.

The diagram below shows this region is for various values of p.

{ (x, y)
∣
∣ |x| + |y| < 1 }

(the case p=1)

{ (x, y)
∣
∣ |x|3/2 + |y|3/2 < 1 }
(the case p=3/2)

{ (x, y)
∣
∣ |x|2 + |y|2 < 1 }

(the case p=2)

{ (x, y)
∣
∣ |x|3 + |y|3 < 1 }

(the case p=3)

{ (x, y)
∣
∣ max(|x|, |y|) < 1 }

(the case p=∞)

–3–


