Lemma. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be points in \mathbb{R}^{n}. Then

$$
d_{\infty}(x, y) \leq d_{p}\left((x, y) \leq \sqrt[p]{n} d_{\infty}(x, y)\right.
$$

for all $p \geq 1$.
Proof. Choose $i \in\{1,2, \ldots, n\}$ so that

$$
\left|x_{i}-y_{i}\right|=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|, \ldots,\left|x_{n}-y_{n}\right|\right)
$$

Thus, $\left|x_{i}-y_{i}\right|=d_{\infty}(x, y)$. Now, clearly

$$
\left|x_{i}-y_{i}\right|^{p} \leq\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}+\cdots+\left|x_{n}-y_{n}\right|^{p} \leq n\left|x_{i}-y_{i}\right|^{p}
$$

and so, taking p-th roots,

$$
\left|x_{i}-y_{i}\right| \leq \sqrt[p]{\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}+\cdots+\left|x_{n}-y_{n}\right|^{p}} \leq \sqrt[p]{n}\left|x_{i}-y_{i}\right|
$$

That is,

$$
d_{\infty}(x, y) \leq d_{p}(x, y) \leq \sqrt[p]{n} d_{\infty}(x, y)
$$

as claimed.
Corollary. For all $x \in \mathbb{R}^{n}$ and all $\varepsilon>0$,

$$
B_{d_{\infty}}\left(x, n^{-1 / p} \varepsilon\right) \subseteq B_{d_{p}}(x, \varepsilon) \subseteq B_{d_{\infty}}(x, \varepsilon)
$$

Proof. If $y \in B_{d_{p}}(x, \varepsilon)$ then $d_{p}(x, y)<\varepsilon$, and so, by the lemma, $d_{\infty}(x, y)<\varepsilon$, giving $y \in B_{d_{\infty}}(x, \varepsilon)$. Since this is true for all $y \in B_{d_{p}}(x, \varepsilon)$, the second of the above inclusions holds. Similarly, if $y \in B_{d_{\infty}}\left(x, n^{-1 / p} \varepsilon\right)$ then $n^{1 / p} d_{\infty}(x, y)<\varepsilon$ and, by the lemma, $d_{p}(x, y)<\varepsilon$, whence $y \in B_{d_{p}}(x, \varepsilon)$. So the first inclusion holds too.
Corollary. Let $A \subseteq \mathbb{R}^{n}$ and $x \in A$, and let $p \geq 1$ be arbitrary. If there exists $\varepsilon>0$ with $B_{d_{p}}(x, \varepsilon) \subseteq A$ then there exists $\varepsilon^{\prime}>0$ with $B_{d_{\infty}}\left(x, \varepsilon^{\prime}\right) \subseteq A$, and vice versa.
Proof. By the previous corollary we see that if $B_{d_{\infty}}(x, \varepsilon) \subseteq A$ then $B_{d_{p}}(x, \varepsilon) \subseteq A$, since $B_{d_{p}}(x, \varepsilon) \subseteq B_{d_{\infty}}(x, \varepsilon)$. So $B_{d_{p}}\left(x, \varepsilon^{\prime}\right) \subseteq A$ holds with $\varepsilon^{\prime}=\varepsilon$. Conversely, if $B_{d_{p}}(x, \varepsilon) \subseteq A$ then, since $B_{d_{\infty}}\left(x, n^{-1 / p} \varepsilon\right) \subseteq B_{d_{p}}(x, \varepsilon)$, the desired conclusion $B_{d_{\infty}}\left(x, \varepsilon^{\prime}\right) \subseteq A$ follows if we put $\varepsilon^{\prime}=n^{-1 / p} \varepsilon$.

Given $A \subseteq \mathbb{R}^{n}$, let $\operatorname{Int}_{\infty}(A)$ be the interior of A when we use d_{∞} as the metric on \mathbb{R}^{n}, and let $\operatorname{Int}_{p}(A)$ be the interior of A when d_{p} is used as the metric. By the definition of interior, $x \in \operatorname{Int}_{p}(A)$ if and only if there exists $\varepsilon>0$ with $B_{d_{p}}(x, \varepsilon) \subseteq A$, and similarly $x \in \operatorname{Int}_{\infty}(A)$ if and only if there exists $\varepsilon^{\prime}>0$ with $B_{d_{\infty}}\left(x, \varepsilon^{\prime}\right) \subseteq A$. But the corollary above shows that these two conditions are equivalent, and therefore $\operatorname{Int}_{p}(A)=\operatorname{Int}_{\infty}(A)$. A subset of a metric space is open if and only if it coincides with its interior; thus A is an open set of the metric space $\left(\mathbb{R}^{n}, d_{p}\right)$ if and only if it is an open set of the metric space $\left(\mathbb{R}^{n}, d_{\infty}\right)\left(\right.$ since $A=\operatorname{Int}_{p}(A)$ if and only if $\left.A=\operatorname{Int}_{\infty}(A)\right)$.

The conclusion of this reasoning can be summarized as follows: for all $p>1$ the metrics d_{p} and d_{∞} are topologically equivalent, in the sense that they give rise to the same collection of open sets. We shall refer to this topology the usual topology on \mathbb{R}^{n}.
(Note also that everything that has been said above works just as well for \mathbb{C}^{n} as it does for \mathbb{R}^{n}.)

Intuitively, a subset A of \mathbb{R}^{2} whose boundary is a continuous curve is an open set (in the usual topology) if the boundary points themselves are not part of the set. Thus, for example, the set $E=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}-2 x_{1}+4 x_{2}^{2}<8\right\}$, consisting of the points of the plane that are inside but not on the ellipse $x_{1}^{2}-2 x_{1}+4 x_{2}^{2}=8$ is an open set.

It was shown in Lecture 6 that the boundary of a set, in the technical sense we have defined, consists of all points a with the property that every neighbourhood of a has nonempty intersection with both the set and its complement. This clearly accords with the everyday meaning of the word "boundary", at least for sets like E above: the points $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ such that every circle with centre $\left(x_{1}, x_{2}\right)$ contains points of E and points of $\mathbb{R}^{2} \backslash E$ are clearly those points which lie on the ellipse $x_{1}^{2}-2 x_{1}+4 x_{2}^{2}=8$. Note also that the closure of E is the union of E and its boundary, which coincides with $\left\{(x, y) \mid x^{2}-2 x+4 y^{2} \leq 8\right\}$.

If $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is any continuous function, and $K \in \mathbb{R}$, then the set A given by $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid f\left(x_{1}, x_{2}\right)<K\right\}$ is always open. To prove this we must show that for all points $\left(x_{1}, x_{2}\right) \in A$ there is an $\delta>0$ such that $B\left(\left(x_{1}, x_{2}\right), \delta\right) \subseteq A$. In other words, whenever $f\left(x_{1}, x_{2}\right)<K$ there exists $\delta>0$ such that if $\left(y_{1}, y_{2}\right)$ is any point whose distance from $\left(x_{1}, x_{2}\right)$ is less than δ then $f\left(y_{1}, y_{2}\right)<K$. Since all the metrics d_{p} give the same collection of open sets, it makes no difference which we use as our measure of distance. For convenience, we shall use d_{∞}.

Suppose that $f\left(x_{1}, x_{2}\right)<K$, and put $\varepsilon=K-f\left(x_{1}, x_{2}\right)$. Note that $\varepsilon>0$. Since f is continuous there is a $\delta>0$ such that $\left|f\left(y_{1}, y_{2}\right)-f\left(x_{1}, x_{2}\right)\right|<\varepsilon$ whenever $\left|y_{1}-x_{1}\right|<\delta$ and $\left|y_{2}-x_{2}\right|<\delta$. That is,

$$
f\left(x_{1}, x_{2}\right)-\varepsilon<f\left(y_{1}, y_{2}\right)<f\left(x_{1}, x_{2}\right)+\varepsilon=K
$$

whenever $d_{\infty}\left(\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right)<\delta$. In particular, $\left(y_{1}, y_{2}\right) \in B\left(\left(x_{1}, x_{2}\right), \varepsilon\right)$ implies that $f\left(y_{1}, y_{2}\right)<K$, as required.

Observe that the set A above can be described as $\left\{x \in \mathbb{R}^{2} \mid f(x) \in I\right\}$, where $I=\{t \in \mathbb{R} \mid t<K\}=(-\infty, K)$. That is, $A=f^{-1}(I)$. Thus the proof we have just been through could have been circumvented by proving that I is an open subset of \mathbb{R}, and using the fact (which we proved in Lecture 2) that the preimage of an open set under a continous function is open.

Taking f to be the function defined by $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}+4 x_{2}^{2}$ and taking K to be 8 yields a proof that the set E above is indeed open. Similarly, if we instead take $f\left(x_{1}, x_{2}\right)=-x_{1}^{2}+2 x_{2}-4 x_{2}^{2}$ then it follows that the set $\left\{\left(x_{1} \cdot x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}-2 x_{1}+4 x_{2}^{2}>8\right\}$ is also open. In other words, since closed sets are complements of open sets, the set $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}-2 x_{1}+4 x_{2}^{2} \leq 8\right\}$ is closed. To prove that this set is \bar{E}, the closure of E, requires proving that every neighbourhood of a point on the ellipse contains a point of E. We omit this, although it is not difficult.

Limits of sequences

Let (X, d) be a metric space, and $\left(x_{n}\right)_{n=1}^{\infty}$ a sequence of points of X. We say that $\left(x_{n}\right)$ converges to a point $x \in X$ if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. If $\left(x_{n}\right)$ converges to x then we write $x_{n} \rightarrow x$ as $n \rightarrow \infty$. The notation $\lim _{n \rightarrow \infty} x_{n}=x$ is also used.

From the definition of convergence for sequences of real numbers, $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ if and only if for all $\varepsilon>0$ there is an $N \in \mathbb{Z}$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>N$. Combining this with the above definition of convergence in a metric space X, we see that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ if and only if for all $\varepsilon>0$ there exists $N \in \mathbb{Z}$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>N$. Equivalently again, $x_{n} \rightarrow x$ as $n \rightarrow \infty$ if and only if for all $\varepsilon>0$ there exists $N \in \mathbb{Z}$ such that $x_{n} \in B_{d}(x, \varepsilon)$ for all $n>N$.

For example, let $X=\mathbb{R}^{3}$ and $d=d_{p}$, as defined in an earlier lecture. Suppose that $\left(x^{(k)}\right)_{k=1}^{\infty}$ is a sequence in X, and let $x^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, x_{3}^{(k)}\right)$ for each k. Suppose that $x^{(k)} \rightarrow x=\left(x_{1}, x_{2}, x_{3}\right)$ as $k \rightarrow \infty$. Then for all k, and for each $l \in\{1,2,3\}$,

$$
0 \leq\left|x_{l}^{(k)}-x_{l}\right|=\sqrt[p]{\left|x_{l}^{(k)}-x_{l}\right|^{p}} \leq \sqrt[p]{\sum_{i=1}^{3}\left|x_{i}^{(k)}-x_{i}\right|^{p}}=d_{p}\left(x^{(k)}, x\right) \rightarrow 0 \text { as } k \rightarrow \infty
$$

Hence $x^{(k)} \rightarrow x$ as $k \rightarrow \infty$ implies that $x_{l}^{(k)} \rightarrow x_{l}$ as $k \rightarrow \infty$ for each l. Conversely, if $x_{l}^{(k)} \rightarrow x_{l}$ as $k \rightarrow \infty$ for each $l \in\{1,2,3\}$, then $d_{p}\left(x^{(k)}, x\right)=\sqrt[p]{\sum_{i=1}^{3}\left|x_{i}^{(k)}-x_{i}\right|^{p}} \rightarrow 0$ as $k \rightarrow \infty$; that is, $x^{(k)} \rightarrow x$.

It is clear that the same works for \mathbb{R}^{n} for any value of n :

$$
\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { as } k \rightarrow \infty
$$

if and only if

$$
x_{l}^{(k)} \rightarrow x_{l} \text { as } k \rightarrow \infty \text { for all } l .
$$

A sequence in \mathbb{R}^{n} converges, for the d_{p} metric, if and only if each sequence of coordinates converges in \mathbb{R}. The same statement applies if we use d_{∞} instead of d_{p}, and the proof is much the same as the proof above.

Recall that ℓ^{p} is the space of all sequences $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ of real numbers such that $\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}$ converges, with metric d_{p} given by $d_{p}(a, b)=\sqrt[p]{\sum_{k=1}^{\infty}\left|a_{k}-b_{k}\right|^{p} \text { (where }}$ $a=\left(a_{k}\right)$ and $b=\left(b_{k}\right)$ are arbitrary elements of $\left.\ell^{p}\right)$. Also, ℓ^{∞} is the space of all bounded sequences $\left(a_{k}\right)$, with metric d_{∞} defined by $d_{\infty}(a, b)=\sup _{k}\left|a_{k}-b_{k}\right|$. (To say that the sequence (a_{k}) is bounded is to say that there exists a number $B \in \mathbb{R}$ such that $\left|a_{k}\right|<B$ for all $k \in \mathbb{Z}^{+}$.)

Suppose that $a^{(k)}=\left(a_{1}^{(k)}, a_{2}^{(k)}, a_{3}^{(k)}, \ldots,\right)$ is in ℓ^{p} for all $k \in \mathbb{Z}^{+}$, and suppose that $\lim _{k \rightarrow \infty} a^{(k)}=a=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. Then

$$
0 \leq\left|a_{i}^{(k)}-a_{i}\right|=\sqrt[p]{\left|a_{i}^{(k)}-a_{i}\right|^{p}} \leq \sqrt[p]{\sum_{l=1}^{\infty}\left|a_{l}^{(k)}-a_{l}\right|^{p}} \quad \longrightarrow 0 \quad \text { as } k \rightarrow \infty
$$

So $a_{i}^{(k)} \rightarrow a_{i}$ as $k \rightarrow \infty$ for all i. That is, we have shown that if $a^{(k)} \rightarrow a$ as $k \rightarrow \infty$ then (ith term of $\left.a^{(k)}\right) \rightarrow(i$ th term of a) as $k \rightarrow \infty$, for each i. The converse, however, does
not hold. For example, define

$$
\begin{aligned}
a^{(1)} & =(1,0,0,0, \ldots) \\
a^{(2)} & =(0,1,0,0, \ldots) \\
a^{(3)} & =(0,0,1,0, \ldots)
\end{aligned}
$$

That is,

$$
a_{i}^{(k)}= \begin{cases}1 & \text { if } i=k \\ 0 & \text { if } i \neq k\end{cases}
$$

If i is fixed then $\lim _{k \rightarrow \infty} a_{i}^{(k)}=0$, since $a_{i}^{(k)}=0$ for all $k>i$. But it is not true that $a^{(k)} \rightarrow a=(0,0,0, \ldots)$ as $k \rightarrow \infty$, since

$$
\begin{aligned}
d_{p}\left(a^{(k)}, a\right) & =\sqrt[p]{\sum_{l=1}^{\infty}\left|a_{i}^{(k)}-a_{i}\right|^{p}} \\
& =1 \quad\left(\text { since } a_{i}^{(k)}-a_{i}=\left\{\begin{array}{ll}
1 & \text { if } i=k \\
0 & \text { if } i \neq k
\end{array}\right)\right. \\
& \ngtr 0 \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

(The same works for ℓ^{∞}. In fact, exactly the same example is applicable.)

