Metric Spaces

Lemma. Let $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ be points in \mathbb{R}^n . Then

 $d_{\infty}(x,y) \le d_p((x,y) \le \sqrt[p]{n} d_{\infty}(x,y)$

for all $p \geq 1$.

Proof. Choose $i \in \{1, 2, \ldots, n\}$ so that

$$|x_i - y_i| = \max(|x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n|).$$

Thus, $|x_i - y_i| = d_{\infty}(x, y)$. Now, clearly

$$|x_i - y_i|^p \le |x_1 - y_1|^p + |x_2 - y_2|^p + \dots + |x_n - y_n|^p \le n|x_i - y_i|^p,$$

and so, taking *p*-th roots,

$$|x_i - y_i| \le \sqrt[p]{|x_1 - y_1|^p} + |x_2 - y_2|^p + \dots + |x_n - y_n|^p} \le \sqrt[p]{n} |x_i - y_i|,$$

That is,

$$d_{\infty}(x,y) \le d_p(x,y) \le \sqrt[p]{n} d_{\infty}(x,y)$$

as claimed.

Corollary. For all $x \in \mathbb{R}^n$ and all $\varepsilon > 0$,

$$B_{d_{\infty}}(x, n^{-1/p}\varepsilon) \subseteq B_{d_p}(x, \varepsilon) \subseteq B_{d_{\infty}}(x, \varepsilon).$$

Proof. If $y \in B_{d_p}(x,\varepsilon)$ then $d_p(x,y) < \varepsilon$, and so, by the lemma, $d_{\infty}(x,y) < \varepsilon$, giving $y \in B_{d_{\infty}}(x,\varepsilon)$. Since this is true for all $y \in B_{d_p}(x,\varepsilon)$, the second of the above inclusions holds. Similarly, if $y \in B_{d_{\infty}}(x,n^{-1/p}\varepsilon)$ then $n^{1/p}d_{\infty}(x,y) < \varepsilon$ and, by the lemma, $d_p(x,y) < \varepsilon$, whence $y \in B_{d_p}(x,\varepsilon)$. So the first inclusion holds too.

Corollary. Let $A \subseteq \mathbb{R}^n$ and $x \in A$, and let $p \ge 1$ be arbitrary. If there exists $\varepsilon > 0$ with $B_{d_p}(x,\varepsilon) \subseteq A$ then there exists $\varepsilon' > 0$ with $B_{d_{\infty}}(x,\varepsilon') \subseteq A$, and vice versa.

Proof. By the previous corollary we see that if $B_{d_{\infty}}(x,\varepsilon) \subseteq A$ then $B_{d_p}(x,\varepsilon) \subseteq A$, since $B_{d_p}(x,\varepsilon) \subseteq B_{d_{\infty}}(x,\varepsilon)$. So $B_{d_p}(x,\varepsilon') \subseteq A$ holds with $\varepsilon' = \varepsilon$. Conversely, if $B_{d_p}(x,\varepsilon) \subseteq A$ then, since $B_{d_{\infty}}(x,n^{-1/p}\varepsilon) \subseteq B_{d_p}(x,\varepsilon)$, the desired conclusion $B_{d_{\infty}}(x,\varepsilon') \subseteq A$ follows if we put $\varepsilon' = n^{-1/p}\varepsilon$.

Given $A \subseteq \mathbb{R}^n$, let $\operatorname{Int}_{\infty}(A)$ be the interior of A when we use d_{∞} as the metric on \mathbb{R}^n , and let $\operatorname{Int}_p(A)$ be the interior of A when d_p is used as the metric. By the definition of interior, $x \in \operatorname{Int}_p(A)$ if and only if there exists $\varepsilon > 0$ with $B_{d_p}(x,\varepsilon) \subseteq A$, and similarly $x \in \operatorname{Int}_{\infty}(A)$ if and only if there exists $\varepsilon' > 0$ with $B_{d_{\infty}}(x,\varepsilon') \subseteq A$. But the corollary above shows that these two conditions are equivalent, and therefore $\operatorname{Int}_p(A) = \operatorname{Int}_{\infty}(A)$. A subset of a metric space is open if and only if it coincides with its interior; thus A is an open set of the metric space (\mathbb{R}^n, d_p) if and only if it is an open set of the metric space $(\mathbb{R}^n, d_{\infty})$ (since $A = \operatorname{Int}_p(A)$ if and only if $A = \operatorname{Int}_{\infty}(A)$).

The conclusion of this reasoning can be summarized as follows: for all p > 1 the metrics d_p and d_{∞} are topologically equivalent, in the sense that they give rise to the same collection of open sets. We shall refer to this topology the usual topology on \mathbb{R}^n .

Lecture 7

(Note also that everything that has been said above works just as well for \mathbb{C}^n as it does for \mathbb{R}^n .)

Intuitively, a subset A of \mathbb{R}^2 whose boundary is a continuous curve is an open set (in the usual topology) if the boundary points themselves are not part of the set. Thus, for example, the set $E = \{ (x_1, x_2) \mid x_1^2 - 2x_1 + 4x_2^2 < 8 \}$, consisting of the points of the plane that are inside but not on the ellipse $x_1^2 - 2x_1 + 4x_2^2 = 8$ is an open set.

It was shown in Lecture 6 that the boundary of a set, in the technical sense we have defined, consists of all points a with the property that every neighbourhood of a has nonempty intersection with both the set and its complement. This clearly accords with the everyday meaning of the word "boundary", at least for sets like E above: the points $(x_1, x_2) \in \mathbb{R}^2$ such that every circle with centre (x_1, x_2) contains points of E and points of $\mathbb{R}^2 \setminus E$ are clearly those points which lie on the ellipse $x_1^2 - 2x_1 + 4x_2^2 = 8$. Note also that the closure of E is the union of E and its boundary, which coincides with $\{(x, y) \mid x^2 - 2x + 4y^2 \leq 8\}$.

If $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is any continuous function, and $K \in \mathbb{R}$, then the set A given by $A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid f(x_1, x_2) < K \}$ is always open. To prove this we must show that for all points $(x_1, x_2) \in A$ there is an $\delta > 0$ such that $B((x_1, x_2), \delta) \subseteq A$. In other words, whenever $f(x_1, x_2) < K$ there exists $\delta > 0$ such that if (y_1, y_2) is any point whose distance from (x_1, x_2) is less than δ then $f(y_1, y_2) < K$. Since all the metrics d_p give the same collection of open sets, it makes no difference which we use as our measure of distance. For convenience, we shall use d_{∞} .

Suppose that $f(x_1, x_2) < K$, and put $\varepsilon = K - f(x_1, x_2)$. Note that $\varepsilon > 0$. Since f is continuous there is a $\delta > 0$ such that $|f(y_1, y_2) - f(x_1, x_2)| < \varepsilon$ whenever $|y_1 - x_1| < \delta$ and $|y_2 - x_2| < \delta$. That is,

$$f(x_1, x_2) - \varepsilon < f(y_1, y_2) < f(x_1, x_2) + \varepsilon = K$$

whenever $d_{\infty}((y_1, y_2), (x_1, x_2)) < \delta$. In particular, $(y_1, y_2) \in B((x_1, x_2), \varepsilon)$ implies that $f(y_1, y_2) < K$, as required.

Observe that the set A above can be described as $\{x \in \mathbb{R}^2 \mid f(x) \in I\}$, where $I = \{t \in \mathbb{R} \mid t < K\} = (-\infty, K)$. That is, $A = f^{-1}(I)$. Thus the proof we have just been through could have been circumvented by proving that I is an open subset of \mathbb{R} , and using the fact (which we proved in Lecture 2) that the preimage of an open set under a continous function is open.

Taking f to be the function defined by $f(x_1, x_2) = x_1^2 - 2x_1 + 4x_2^2$ and taking K to be 8 yields a proof that the set E above is indeed open. Similarly, if we instead take $f(x_1, x_2) = -x_1^2 + 2x_2 - 4x_2^2$ then it follows that the set $\{(x_1.x_2) \in \mathbb{R}^2 \mid x_1^2 - 2x_1 + 4x_2^2 > 8\}$ is also open. In other words, since closed sets are complements of open sets, the set $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 - 2x_1 + 4x_2^2 \leq 8\}$ is closed. To prove that this set is \overline{E} , the closure of E, requires proving that every neighbourhood of a point on the ellipse contains a point of E. We omit this, although it is not difficult.

Limits of sequences

Let (X, d) be a metric space, and $(x_n)_{n=1}^{\infty}$ a sequence of points of X. We say that (x_n) converges to a point $x \in X$ if $\lim_{n \to \infty} d(x_n, x) = 0$. If (x_n) converges to x then we write $x_n \to x$ as $n \to \infty$. The notation $\lim_{n \to \infty} x_n = x$ is also used. From the definition of convergence for sequences of real numbers, $\lim_{n \to \infty} d(x_n, x) = 0$

From the definition of convergence for sequences of real numbers, $\lim_{n\to\infty} d(x_n, x) = 0$ if and only if for all $\varepsilon > 0$ there is an $N \in \mathbb{Z}$ such that $d(x_n, x) < \varepsilon$ for all n > N. Combining this with the above definition of convergence in a metric space X, we see that $x_n \to x$ as $n \to \infty$ if and only if for all $\varepsilon > 0$ there exists $N \in \mathbb{Z}$ such that $d(x_n, x) < \varepsilon$ for all n > N. Equivalently again, $x_n \to x$ as $n \to \infty$ if and only if for all $\varepsilon > 0$ there exists $N \in \mathbb{Z}$ such that $x_n \in B_d(x, \varepsilon)$ for all n > N.

For example, let $X = \mathbb{R}^3$ and $d = d_p$, as defined in an earlier lecture. Suppose that $(x^{(k)})_{k=1}^{\infty}$ is a sequence in X, and let $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)})$ for each k. Suppose that $x^{(k)} \to x = (x_1, x_2, x_3)$ as $k \to \infty$. Then for all k, and for each $l \in \{1, 2, 3\}$,

$$0 \le |x_l^{(k)} - x_l| = \sqrt[p]{|x_l^{(k)} - x_l|^p} \le \sqrt[p]{\sum_{i=1}^3 |x_i^{(k)} - x_i|^p} = d_p(x^{(k)}, x) \to 0 \text{ as } k \to \infty.$$

Hence $x^{(k)} \to x$ as $k \to \infty$ implies that $x_l^{(k)} \to x_l$ as $k \to \infty$ for each l. Conversely, if $x_l^{(k)} \to x_l$ as $k \to \infty$ for each $l \in \{1, 2, 3\}$, then $d_p(x^{(k)}, x) = \sqrt[p]{\sum_{i=1}^3 |x_i^{(k)} - x_i|^p} \to 0$ as $k \to \infty$; that is, $x^{(k)} \to x$.

It is clear that the same works for \mathbb{R}^n for any value of n:

$$(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}) \to (x_1, x_2, \dots, x_n)$$
 as $k \to \infty$

if and only if

$$x_l^{(k)} \to x_l$$
 as $k \to \infty$ for all l .

A sequence in \mathbb{R}^n converges, for the d_p metric, if and only if each sequence of coordinates converges in \mathbb{R} . The same statement applies if we use d_{∞} instead of d_p , and the proof is much the same as the proof above.

Recall that ℓ^p is the space of all sequences $a = (a_1, a_2, a_3, ...)$ of real numbers such that $\sum_{k=1}^{\infty} |a_k|^p$ converges, with metric d_p given by $d_p(a, b) = \sqrt[p]{\sum_{k=1}^{\infty} |a_k - b_k|^p}$ (where $a = (a_k)$ and $b = (b_k)$ are arbitrary elements of ℓ^p). Also, ℓ^∞ is the space of all bounded sequences (a_k) , with metric d_∞ defined by $d_\infty(a, b) = \sup_k |a_k - b_k|$. (To say that the sequence (a_k) is bounded is to say that there exists a number $B \in \mathbb{R}$ such that $|a_k| < B$ for all $k \in \mathbb{Z}^+$.)

Suppose that $a^{(k)} = (a_1^{(k)}, a_2^{(k)}, a_3^{(k)}, \dots,)$ is in ℓ^p for all $k \in \mathbb{Z}^+$, and suppose that $\lim_{k \to \infty} a^{(k)} = a = (a_1, a_2, a_3, \dots)$. Then

$$0 \le |a_i^{(k)} - a_i| = \sqrt[p]{|a_i^{(k)} - a_i|^p} \le \sqrt[p]{\sum_{l=1}^{\infty} |a_l^{(k)} - a_l|^p} \longrightarrow 0 \quad \text{as } k \to \infty.$$

So $a_i^{(k)} \to a_i$ as $k \to \infty$ for all *i*. That is, we have shown that if $a^{(k)} \to a$ as $k \to \infty$ then (*i*th term of $a^{(k)}$) \to (*i*th term of *a*) as $k \to \infty$, for each *i*. The converse, however, does

not hold. For example, define

$$a^{(1)} = (1, 0, 0, 0, \dots)$$

$$a^{(2)} = (0, 1, 0, 0, \dots)$$

$$a^{(3)} = (0, 0, 1, 0, \dots)$$

...

That is,

$$a_i^{(k)} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k. \end{cases}$$

If *i* is fixed then $\lim_{k\to\infty} a_i^{(k)} = 0$, since $a_i^{(k)} = 0$ for all k > i. But it is not true that $a^{(k)} \to a = (0, 0, 0, \dots)$ as $k \to \infty$, since

$$d_p(a^{(k)}, a) = \sqrt[p]{\sum_{l=1}^{\infty} |a_i^{(k)} - a_i|^p}$$

= 1 (since $a_i^{(k)} - a_i = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$)
 $\not \to 0$ as $k \to \infty$.

(The same works for $\ell^\infty.$ In fact, exactly the same example is applicable.)