
Metric Spaces Lecture 7

Lemma. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be points in Rn. Then

d∞(x, y) ≤ dp((x, y) ≤ p
√

n d∞(x, y)

for all p ≥ 1.
Proof. Choose i ∈ {1, 2, . . . , n} so that

|xi − yi| = max(|x1 − y1|, |x2 − y2|, . . . , |xn − yn|).

Thus, |xi − yi| = d∞(x, y). Now, clearly

|xi − yi|p ≤ |x1 − y1|p + |x2 − y2|p + · · ·+ |xn − yn|p ≤ n|xi − yi|p,

and so, taking p-th roots,

|xi − yi| ≤ p
√
|x1 − y1|p + |x2 − y2|p + · · ·+ |xn − yn|p ≤ p

√
n |xi − yi|,

That is,
d∞(x, y) ≤ dp(x, y) ≤ p

√
n d∞(x, y)

as claimed. �

Corollary. For all x ∈ Rn and all ε > 0,

Bd∞(x, n−1/pε) ⊆ Bdp
(x, ε) ⊆ Bd∞(x, ε).

Proof. If y ∈ Bdp
(x, ε) then dp(x, y) < ε, and so, by the lemma, d∞(x, y) < ε, giving

y ∈ Bd∞(x, ε). Since this is true for all y ∈ Bdp
(x, ε), the second of the above inclu-

sions holds. Similarly, if y ∈ Bd∞(x, n−1/pε) then n1/pd∞(x, y) < ε and, by the lemma,
dp(x, y) < ε, whence y ∈ Bdp(x, ε). So the first inclusion holds too. �

Corollary. Let A ⊆ Rn and x ∈ A, and let p ≥ 1 be arbitrary. If there exists ε > 0 with
Bdp

(x, ε) ⊆ A then there exists ε′ > 0 with Bd∞(x, ε′) ⊆ A, and vice versa.
Proof. By the previous corollary we see that if Bd∞(x, ε) ⊆ A then Bdp

(x, ε) ⊆ A, since
Bdp(x, ε) ⊆ Bd∞(x, ε). So Bdp(x, ε′) ⊆ A holds with ε′ = ε. Conversely, if Bdp(x, ε) ⊆ A

then, since Bd∞(x, n−1/pε) ⊆ Bdp
(x, ε), the desired conclusion Bd∞(x, ε′) ⊆ A follows if

we put ε′ = n−1/pε. �

Given A ⊆ Rn, let Int∞(A) be the interior of A when we use d∞ as the metric on Rn,
and let Intp(A) be the interior of A when dp is used as the metric. By the definition of
interior, x ∈ Intp(A) if and only if there exists ε > 0 with Bdp

(x, ε) ⊆ A, and similarly
x ∈ Int∞(A) if and only if there exists ε′ > 0 with Bd∞(x, ε′) ⊆ A. But the corollary
above shows that these two conditions are equivalent, and therefore Intp(A) = Int∞(A).
A subset of a metric space is open if and only if it coincides with its interior; thus A is an
open set of the metric space (Rn, dp) if and only if it is an open set of the metric space
(Rn, d∞) (since A = Intp(A) if and only if A = Int∞(A)).

The conclusion of this reasoning can be summarized as follows: for all p > 1 the
metrics dp and d∞ are topologically equivalent, in the sense that they give rise to the
same collection of open sets. We shall refer to this topology the usual topology on Rn.
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(Note also that everything that has been said above works just as well for Cn as it does
for Rn.)

Intuitively, a subset A of R2 whose boundary is a continuous curve is an open set
(in the usual topology) if the boundary points themselves are not part of the set. Thus,
for example, the set E = { (x1, x2) | x2

1 − 2x1 + 4x2
2 < 8 }, consisting of the points of the

plane that are inside but not on the ellipse x2
1 − 2x1 + 4x2

2 = 8 is an open set.

E

It was shown in Lecture 6 that the boundary of a set, in the technical sense we have defined,
consists of all points a with the property that every neighbourhood of a has nonempty
intersection with both the set and its complement. This clearly accords with the everyday
meaning of the word “boundary”, at least for sets like E above: the points (x1, x2) ∈ R2

such that every circle with centre (x1, x2) contains points of E and points of R2 \ E are
clearly those points which lie on the ellipse x2

1−2x1 +4x2
2 = 8. Note also that the closure

of E is the union of E and its boundary, which coincides with { (x, y) | x2−2x+4y2 ≤ 8 }.
If f : R × R → R is any continuous function, and K ∈ R, then the set A given by

A = { (x1, x2) ∈ R2 | f(x1, x2) < K } is always open. To prove this we must show that
for all points (x1, x2) ∈ A there is an δ > 0 such that B((x1, x2), δ) ⊆ A. In other words,
whenever f(x1, x2) < K there exists δ > 0 such that if (y1, y2) is any point whose distance
from (x1, x2) is less than δ then f(y1, y2) < K. Since all the metrics dp give the same
collection of open sets, it makes no difference which we use as our measure of distance.
For convenience, we shall use d∞.

Suppose that f(x1, x2) < K, and put ε = K − f(x1, x2). Note that ε > 0. Since f is
continuous there is a δ > 0 such that |f(y1, y2) − f(x1, x2)| < ε whenever |y1 − x1| < δ
and |y2 − x2| < δ. That is,

f(x1, x2)− ε < f(y1, y2) < f(x1, x2) + ε = K

whenever d∞((y1, y2), (x1, x2)) < δ. In particular, (y1, y2) ∈ B((x1, x2), ε) implies that
f(y1, y2) < K, as required.

Observe that the set A above can be described as {x ∈ R2 | f(x) ∈ I }, where
I = { t ∈ R | t < K } = (−∞,K). That is, A = f−1(I). Thus the proof we have just
been through could have been circumvented by proving that I is an open subset of R, and
using the fact (which we proved in Lecture 2) that the preimage of an open set under a
continous function is open.

Taking f to be the function defined by f(x1, x2) = x2
1 − 2x1 + 4x2

2 and taking K
to be 8 yields a proof that the set E above is indeed open. Similarly, if we instead take
f(x1, x2) = −x2

1+2x2−4x2
2 then it follows that the set { (x1.x2) ∈ R2 | x2

1−2x1+4x2
2 > 8 }

is also open. In other words, since closed sets are complements of open sets, the set
{(x1, x2) ∈ R2 | x2

1 − 2x1 + 4x2
2 ≤ 8 } is closed. To prove that this set is E, the closure

of E, requires proving that every neighbourhood of a point on the ellipse contains a point
of E. We omit this, although it is not difficult.
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Limits of sequences

Let (X, d) be a metric space, and (xn)∞n=1 a sequence of points of X. We say that
(xn) converges to a point x ∈ X if lim

n→∞
d(xn, x) = 0. If (xn) converges to x then we write

xn → x as n →∞. The notation lim
n→∞

xn = x is also used.

From the definition of convergence for sequences of real numbers, lim
n→∞

d(xn, x) = 0

if and only if for all ε > 0 there is an N ∈ Z such that d(xn, x) < ε for all n > N .
Combining this with the above definition of convergence in a metric space X, we see that
xn → x as n → ∞ if and only if for all ε > 0 there exists N ∈ Z such that d(xn, x) < ε
for all n > N . Equivalently again, xn → x as n → ∞ if and only if for all ε > 0 there
exists N ∈ Z such that xn ∈ Bd(x, ε) for all n > N .

For example, let X = R3 and d = dp, as defined in an earlier lecture. Suppose that
(x(k))∞k=1 is a sequence in X, and let x(k) = (x(k)

1 , x
(k)
2 , x

(k)
3 ) for each k. Suppose that

x(k) → x = (x1, x2, x3) as k →∞. Then for all k, and for each l ∈ {1, 2, 3},

0 ≤ |x(k)
l − xl| =

p

√
|x(k)

l − xl|p ≤ p

√∑3

i=1
|x(k)

i − xi|p = dp(x(k), x) → 0 as k →∞.

Hence x(k) → x as k → ∞ implies that x
(k)
l → xl as k → ∞ for each l. Conversely, if

x
(k)
l → xl as k → ∞ for each l ∈ {1, 2, 3}, then dp(x(k), x) = p

√∑3
i=1 |x

(k)
i − xi|p → 0 as

k →∞; that is, x(k) → x.
It is clear that the same works for Rn for any value of n:

(x(k)
1 , x

(k)
2 , . . . , x

(k)
n ) → (x1, x2, . . . , xn) as k →∞

if and only if

x
(k)
l → xl as k →∞ for all l.

A sequence in Rn converges, for the dp metric, if and only if each sequence of coordinates
converges in R. The same statement applies if we use d∞ instead of dp, and the proof is
much the same as the proof above.

Recall that `p is the space of all sequences a = (a1, a2, a3, . . . ) of real numbers such
that

∑∞
k=1 |ak|p converges, with metric dp given by dp(a, b) = p

√∑∞
k=1 |ak − bk|p (where

a = (ak) and b = (bk) are arbitrary elements of `p). Also, `∞ is the space of all bounded
sequences (ak), with metric d∞ defined by d∞(a, b) = supk |ak − bk|. (To say that the
sequence (ak) is bounded is to say that there exists a number B ∈ R such that |ak| < B
for all k ∈ Z+.)

Suppose that a(k) = (a(k)
1 , a

(k)
2 , a

(k)
3 , . . . , ) is in `p for all k ∈ Z+, and suppose that

lim
k→∞

a(k) = a = (a1, a2, a3, . . . ). Then

0 ≤ |a(k)
i − ai| =

p

√
|a(k)

i − ai|p ≤ p

√∑∞

l=1
|a(k)

l − al|p −→ 0 as k →∞.

So a
(k)
i → ai as k →∞ for all i. That is, we have shown that if a(k) → a as k →∞ then

(ith term of a(k)) → (ith term of a) as k → ∞, for each i. The converse, however, does
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not hold. For example, define

a(1) = (1, 0, 0, 0, . . . )
a(2) = (0, 1, 0, 0, . . . )
a(3) = (0, 0, 1, 0, . . . )
· · · · · · · · · · · ·.

That is,

a
(k)
i =

{
1 if i = k
0 if i 6= k.

If i is fixed then lim
k→∞

a
(k)
i = 0, since a

(k)
i = 0 for all k > i. But it is not true that

a(k) → a = (0, 0, 0, . . . ) as k →∞, since

dp(a(k), a) = p

√∑∞

l=1
|a(k)

i − ai|p

= 1 (since a
(k)
i − ai =

{
1 if i = k
0 if i 6= k

)

/−→ 0 as k →∞.

(The same works for `∞. In fact, exactly the same example is applicable.)
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