
Metric Spaces Lecture 9

Some examples of topological spaces
(1) We have seen in Lectures 4 and 5 that if (X, d) is a metric space and U is the set

of all open sets of X, where an open set (as defined in Lecture 1) is a set U with
the property that for all x ∈ U there is a ε > 0 with Bd(x, ε) ⊆ U , then (X,U) is a
topological space. The most important topological spaces are those that are derived
from metric spaces in this way.

(2) Let X be a set with exactly 5 elements, a, b, c, d and e. Define

U =
{
∅, {c}, {b, d}, {a, b, d}, {b, d, e}, {b, c, d}, {a, b, c, d}, {a, b, d, e}, {b, c, d, e}, X

}
.

It is routine, if tedious, to check that the intersection of any two elements of U is an
element of U , and the union of any two elements of U is an element of U . Using this it
is easy to prove by induction that the intersection of any finite collection of elements
of U is in U and the union of any finite collection of elements of U is in U . Since U
is finite an arbitrary collection of elements of U can only have finitely many distinct
elements; so the union of any collection of elementsof U is in U . Thus U is a topology
on X (since the conditions (a), (b) and (c) of the definition given in Lecture 5 are all
satisfied).
Topological spaces with only finitely many elements are not particularly important.
Nevertheless it is often useful, as an aid to understanding topological concepts, to
see how they apply to a finite topological space, such as X above.

(3) Let X be any infinite set, and let U be the set of all subsets U of X such that either
U = ∅ or X\U is finite. That is, U consists of all cofinite subsets, along with the
empty set. It is not hard to check that this is a topology. The main points are that
the intersection of a finite collection of cofinite subsets of X is cofinite (because the
union of a finite collection of finite sets is finite) and the union of any collection of
cofinite subsets of X is cofinite (since if U is a cofinite subset of X and V any subset
of X with U ⊆ V then V is also cofinite).
Again, this topology is not very important, except for illustrating topological con-
cepts.

(4) Let X = C2 with the Zariski topology, as defined in Lecture 5. (Recall that for this
topology, a subset of X is closed if and only if it is the zero set of some collection of
polynomials in two variables.) This is an example of an important topology that is
not derived from a metric.

(5) Let X be any set. Let A be any set of subsets of X with ∅ ∈ A. Let B be the set of
all subsets of X that are finite intersections of sets in A. That is,

B = {P1 ∩ P2 ∩ · · · ∩ Pn | n ∈ N and Pi ∈ A for each i from 1 to n }.
It is clear then that the intersection of any finite collection of elements of B is also
in B. Now put U equal to the set of all subsets of X that are unions of arbitrary
collections of sets in B.
It is relatively easy to check that U is then a topology on X. Firstly, since ∅ ∈ A it
follows that ∅ ∈ B and hence ∅ ∈ U . By definition B consists of all finite intersections
of sets in A; that is, if I is a finite indexing set and Ai ∈ A for all i ∈ I then the set⋃

i∈I

Ai = {x ∈ X | x ∈ Ai for all i ∈ I }
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is in B. It is intended that the set X is necessarily in B. In justification of this, suppose
that the indexing set I above is empty. Then the condition “x ∈ Ai for all i ∈ I”
becomes vacuous, since there are no elements i in I; so

⋃
i∈I Ai = {x ∈ X | } = X.

If you do not like this justification, then you may modify the definition of B to include
X ∈ B explicitly as an extra assumption! Given that X ∈ B, it follows immediately
that X ∈ U .
Since any union of sets which are unions of sets in B is a union of sets in B, it follows
that U is closed under arbitrary unions. To complete the proof that U is a topology
it only remains to show that U is closed under finite intersections. Furthermore, this
follows easily by induction if we can prove that the intersection of two elements of U
is in U . Note first that if B, B′ ∈ B then B ∩ B′ ∈ B, since the intersection of two
finite intersections of elements of A is again a finite intersection of elements of A.
Now suppose that U, U ′ are sets in U . Then U =

⋃
i∈I Bi, for some family (Bi)i∈I

of sets in B, and similarly U ′ =
⋃

j∈J B′
j for some family (B′

j)j∈J of sets in B. This
gives

U ∩ U ′ =
⋃
i∈I
j∈J

(Bi ∩B′
j),

which is a union of elements of B since Bi ∩B′
j ∈ B for all i ∈ I and j ∈ J . That is,

U ∩ U ′ ∈ U , as required.
The topology U that we have constructed here is the topology “generated by A”, in
the sense that U is the smallest collection of subsets of X which is a topology and
satisfies A ⊆ U . In fact Example (2) above was constructed by the method we have
described in this example. Starting with

A =
{
∅, {c}, {a, b, d}, {b, d, e}

}
we take all finite intersections of sets in A to obtain

B =
{
{a, b, c, d, e}, ∅, {c}, {a, b, d}, {b, d, e}, {b, d}

}
and then take all possible unions of sets in B to obtain the topology U .

Separation properties

Notice that in Example (2) above, every open set U such that b ∈ U also satis-
fies d ∈ U . The topology is not fine enough to distinguish between these two points. In
general, if it is true in some topological space that every open set that contains the point
x also contains the point y then every sequence that converges to y also converges to x.
To see this, suppose that that xn → y as n →∞, and let U be an arbitrary open set that
contains x. Then U is an open set containing y, and, since xn → y as n →∞, there exists
an N such that xn ∈ U for all n > N . Since U was an arbitrary open set containing x
this shows that xn → x as n →∞, as claimed.

In almost every important topological space the above situation cannot occur: for
every pair of distinct points x and y there is an open set that contains x and does not
contain y. There are several similar “separation properties” that a topological space may
or may not satisfy.
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Here are some of the relevant definitions.

Definition. Let (X,U be a topological space.
(i) We say that (X,U) is a T1-space for for all x, y ∈ X with x 6= y there is an open set

U with x ∈ U and y /∈ U .
(ii) We say that (X,U) is a Hausdorff space, or a T2-space, if for all x, y ∈ X with x 6= y

there is an open neighbourhood U of x and an open neighbourhood V of y with
U ∩ V = ∅.

(iii) We say that (X,U) is a regular space if whenever x ∈ X and F is a closed set with
x /∈ F there exist disjoint open sets U and V with x ∈ U and F ⊆ V . A regular
T1-space is called a T3-space.

(iv) We say that (X,U) is a normal space if whenever F and G are disjoint closed sets
there exist disjoint open sets U and V with F ⊆ U and G ⊆ V . A normal T1-space
is called a T4-space.
Of these, perhaps the Hausdorff condition is the most important. We may have more

to say later in the course about spaces that satisfy these conditions. For the time being
we content ourselves with a few observations.
Proposition. A topological space X is a T1-space if and only if the set {a} is closed for
all a ∈ X.
Proof. Suppose that X is T1, and let a ∈ X. For each b ∈ X \ {a} the T1 condition tells
us that there is an open set neighbourhood U of b with a /∈ U . That is, U ⊆ X \ {a}. So
b is an interior point of X \ {a}. But b was an arbitrary point of X \ {a}; so all points of
X \ {a} are interior points, and so X \ {a} is open.

Conversely, suppose that all singleton subsets of X are closed, and let a, b ∈ X with
a 6= b. Then U = X \ {b} is an open set with a ∈ U and b /∈ U . So for every pair of
distinct points of X there is an open set which contains one and not the other; that is, X
is a T1-space. �

It follows from this proposition that in a T1 space all finite sets are closed. Indeed,
{a1, a2, . . . , ak} = {a1} ∪ {a2} ∪ · · · ∪ {ak} is a finite union of closed sets, and therefore
closed. Equivalently, in a T1 space all cofinite sets are open. As we saw in Example (3)
above, there is a topology (called the cofinite topology) such that the cofinite sets are the
only nonempty open sets. This is the coarsest T1 topology.

It is easy to see that a space which does not satisfy the T1 condition does not satisfy
the T2 (Hausdorff) condition. We have already observed that if the T1 condition is not
satisfied, so that there are distinct points x and y such that every open set containing x
also contains y, then a sequence with two distinct limits exists. In the other direction, it
is not hard to show that limits are unique in Hausdorff spaces. For, suppose that X is T2

and suppose that (xn) is a sequence in X that converges to the point x and also to the
point y. We shall show that x = y.

Suppose x 6= y. By the T2 property we may choose open sets U and V such that
x ∈ U and y ∈ V , and U ∩ V = ∅. Since xn → x as n →∞ there exists N ∈ Z such that
xn ∈ U for all n > N . Since xn → y as n → ∞ there exists M ∈ Z such that xn ∈ V
for all n > M . Now if we put n = max{N,M} + 1 then n > N and n > M ; so xn ∈ U
and xn ∈ V . This contradicts the fact that U ∩ V = ∅. So we must have x = y, as
desired. �

Let C be the set of all continuous real-valued functions on the closed interval [0, 1].
We shall compare various concepts of convergence for sequences in C. Recall that d and
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d′, as defined below, are both metrics on C: for all f, g ∈ C

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|,

d′(f, g) =
∫ 1

0

|f(x)− g(x)|.

If f ∈ C and (fn) is a sequence in C then to say that (fn) converges to f in (C, d) is the
same as saying that (fn) converges to f uniformly on [0, 1]. This is because the statement

d(fn, f) ≤ ε, (1)

or, equivalently,
sup

x∈[0,1]

|fn(x)− f(x)| ≤ ε,

is equivalent to the statement

|fn(x)− f(x)| ≤ ε for all x ∈ [0, 1], (2)

since to say that ε is an upper bound for the set
{
|fn(x)−f(x)|

∣∣ x ∈ [0, 1]
}

is equivalent
to saying that ε is geater than or equal to the least upper bound of this set. So there
exists an N ∈ Z such that (1) holds for all n > N if and only if there exists an N ∈ Z
such that (2) holds for all n > N .

We investigate how convergence with respect to one of these metrics relates to con-
vergence with respect to the other. Specifically, we consider the following two questions:
(1) Does convergence in (C, d) imply convergence in (C, d′)?
(2) Does convergence in (C, d′) imply convergence in (C, d)?

We shall answer these questions next time.
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