Metric Spaces

Lecture 10

Let C be the set of all continuous real-valued functions on the closed interval [0, 1]. Let d and d' be the metrics on C defined as follows: for all $f, g \in C$,

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$
$$d'(f,g) = \int_0^1 |f(x) - g(x)|.$$

At the end of last lecture we posed the following two questions:

- (1) Does convergence in (\mathcal{C}, d) imply convergence in (\mathcal{C}, d') ?
- (2) Does convergence in (\mathcal{C}, d') imply convergence in (\mathcal{C}, d) ?

The answer to Question (1) is yes. For suppose that (f_n) converges to (f) in (\mathcal{C}, d) , and let $\varepsilon > 0$. Choose $N \in \mathbb{Z}$ such that $d(f_n, f) < \varepsilon$ for all n > N. Now whenever n > Nwe have $|f_n(x) - f(x)| < \varepsilon$ for all $x \in [0, 1]$, and so

$$\int_0^1 |f_n(x) - f(x)| \, dx < \int_0^1 \varepsilon \, dx = \varepsilon x \Big]_{x=0}^{x=1} = \varepsilon.$$

That is, $d'(f_n, f) < \varepsilon$. So we have shown that for all $\varepsilon > 0$ there exists $N \in \mathbb{Z}$ such that $d'(f_n, f) < \varepsilon$ for all n > N. That is, (f_n) converges to f in (\mathcal{C}, d') .

The answer to Question (2) is no. In fact, convergence in (\mathcal{C}, d') does not even imply pointwise convergence on [0, 1], as the following example illustrates. For each $n \in \mathbb{Z}^+$ we define the function f_n on [0, 1] as follows:

$$f_n(x) = \begin{cases} nx & \text{if } 0 \le x \le 1/n, \\ 1 & \text{if } 1/n < x \le 1. \end{cases}$$

It is easily checked that f_n is continuous, the crucial point being that $f_n(1/n) = 1$ equals the limit of $f_n(x)$ as x approaches 1/n from above. Now if f is the constant function given by f(x) = 1 for all $x \in [0, 1]$, then for all $n \in \mathbb{Z}^+$,

$$d'(f_n, f) = \int_0^1 |f(x) - f_n(x)| \, dx$$

= $\int_0^{1/n} |f(x) - f_n(x)| \, dx$ (since $f(x) - f_n(x) = 0$ for $1/n \le x \le 1$)
= $\int_0^{1/n} nx \, dx = 1/2n \longrightarrow 0$ as $n \to \infty$.

So the sequence (f_n) converges to f in (\mathcal{C}, d') . However, $f_n(0) = 0$ for all n, and so $\lim_{n \to \infty} f_n(0) = 0 \neq 1 = f(0)$. So it is not true that $f_n(x) \to f(x)$ as $n \to \infty$ for all $x \in [0, 1]$. That is, (f_n) does not converge pointwise to f on [0, 1].

Note that pointwise convergence does not imply convergence in (\mathcal{C}, d') either, as we can show with another example. Let g_n be the function defined by

$$g_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x \le 1/2n \\ n - n^2 x & \text{if } 1/2n < x \le 1/n \\ 0 & \text{if } 1/2n < x \le 1. \end{cases}$$

Then $g_n(0) = 0$ for all n, so that $\lim_{n \to \infty} g_n(x) = 0$ when x = 0, while for $0 < x \le 1$ we see that $g_n(x) = 0$ whenever n > 1/x, and so again it follows that $\lim_{n \to \infty} g_n(0) = 0$. Thus (g_n) converges pointwise to the zero function g on [0, 1]. However, a short calculation shows that

$$d'(g_n, g) = \int_0^1 |g_n(x)| \, dx = 1/4$$

for all n, and so it is not true that $d'(g_n, g) \to 0$ as $n \to \infty$.

Completeness

Definition. Let (X, d) be a metric space. A sequence $(x_n)_{n=0}^{\infty}$ in X is called a *Cauchy* sequence if for all $\varepsilon > 0$ there exist an $N \in \mathbb{Z}^+$ such that $d(x_n, x_m) < \varepsilon$ for all $n, m \in \mathbb{Z}$ with n > N and m > N.

The idea is that, in some sense, the terms of a Cauchy sequence get closer and closer to each other as $n \to \infty$. Intuition might suggest that such sequences ought to converge. However, if one takes as (X, d) the set \mathbb{Q} of all rational numbers with the usual metric, then one quickly sees that a Cauchy sequence in X need not have a limit in X. For example, let $x_1 = 1$, and for n > 1 define x_n recursively, by the formula $x_n = (x_{n-1}/2) + (1/x_{n-1})$. It is easily seen that $x_n \in \mathbb{Q}$ for all $n \in \mathbb{Z}^+$, and that $x_n \to \sqrt{2}$ as $n \to \infty$. Since $\sqrt{2} \notin \mathbb{Q}$ the sequence (x_n) does not have a limit in \mathbb{Q} . Since it does have a limit in \mathbb{R} (with the usual metric) it is not hard to show that (x_n) is a Cauchy sequence. The metric space \mathbb{Q} is incomplete, in the sense that it does not have limits for all its Cauchy sequences.

Definition. A metric space X is said to be *complete* if every Cauchy sequence in X has a limit in X.