Every set of real numbers which has an upper bound has a supremum (least upper bound), and every set of real numbers which has a lower bound has an infimum (greatest lower bound). Some books use the convention that if $A \subseteq \mathbb{R}$ does not have an upper bound then $\sup (A)=\infty$; then to say that $\sup (A)<\infty$ is equivalent to saying that A is bounded above.

If A and B are bounded subsets of \mathbb{R} with $A \subseteq B$ then every upper bound for B is an upper bound for A; so $\sup (B)$ is an upper bound for A, and so $\sup (A)$, the least upper bound for A, is less than or equal to $\sup (B)$. Similarly, $\inf (B)$ is a lower bound for B, and hence a lower bound for A, and therefore less than or equal to $\inf (A)$, the greatest lower bound for A. We have proved the following statement:

If $A \subseteq B \subset \mathbb{R}$ are bounded then $\sup (A) \leq \sup (B)$ and $\inf (A) \geq \inf (B)$.
Now let $\left(a_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in \mathbb{R}. (That is, the set $\left\{a_{n} \mid n \in \mathbb{Z}^{+}\right\}$ is bounded above and below.) For each $k \in \mathbb{Z}^{+}$, define $A_{k}=\left\{a_{n} \mid n \geq k\right\}$; observe that these sets form a decreasing chain $\left(A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots\right)$. By the principle enunciated above, their supremums decrease and their infimums increase as k increases. So, defining $M_{k}=\sup \left(A_{k}\right)$ and $m_{k}=\inf \left(A_{k}\right)$, we have $m_{1} \leq m_{2} \leq m_{3} \leq \cdots$ and $M_{1} \geq M_{2} \geq M_{3} \geq \cdots$. Note also that for all $i, j \in \mathbb{Z}^{+}$,

$$
\begin{array}{ll}
m_{i} \leq x_{n} & \text { for all } n \geq i \\
M_{j} \geq x_{n} & \text { for all } n \geq j
\end{array}
$$

This is because if $n \geq i$ then $x_{n} \in A_{i}$, and therefore $x_{n} \geq \inf \left(A_{i}\right)=m_{i}$, and similarly if $n \geq j$ then $x_{n} \in A_{j}$, whence $x_{n} \leq \sup \left(A_{j}\right)=M_{j}$. Now if we put $n=\max \{i, j\}$ then $n \geq i$ and $n \geq j$ both hold, and so $m_{i} \leq x_{n}$ and $x_{n} \leq M_{j}$ also both hold. It follows that $m_{i} \leq M_{j}$. Note that i and j here are arbitrary positive integers.

The above reasoning has shown that the m_{i} form an increasing sequence, and every M_{j} is an upper bound for this sequence. And the M_{j} form a decreasing sequence, for which every m_{i} is a lower bound. Since the sequence $\left(m_{i}\right)$ is increasing and bounded above it converges, with limit $m=\sup \left\{m_{i} \mid i \in \mathbb{Z}^{+}\right\}$. Observe that $m \leq M_{j}$ for each j (since each M_{j} is an upper bound, and m the least upper bound, of $\left\{m_{i} \mid i \in \mathbb{Z}^{+}\right\}$). Now the sequence $\left(M_{j}\right)$ is decreasing and bounded below; so it converges, with limit $M=\inf \left\{M_{j} \mid j \in \mathbb{Z}^{+}\right\}$. And $m \leq M$, since m is a lower bound, and M the greatest lower bound, of $\left\{M_{j} \mid j \in \mathbb{Z}^{+}\right\}$. We have thus established the following inequalities:

$$
m_{1} \leq m_{2} \leq m_{3} \leq \cdots \quad \leq m \leq M \leq \cdots \leq M_{3} \leq M_{2} \leq M_{1}
$$

The number m is called the lower limit (or limit inferior) of the sequence (a_{n}), and we write $m=\liminf _{n \rightarrow \infty} a_{n}$. Similarly, M is called the upper limit (or limit superior) of $\left(a_{n}\right)$, and we write $M \stackrel{n \rightarrow \infty}{=} \limsup _{n \rightarrow \infty} a_{n}$. The lower limit is characterized by the following two properties:
(L1) for every $\varepsilon>0$ there exists an $N \in \mathbb{Z}$ such that $a_{n}>m-\varepsilon$ for all $n>N$;
(L2) for every $\varepsilon>0$ and every $N \in \mathbb{Z}$ there exists an $n>N$ such that $a_{n}<m+\varepsilon$. Similarly, the upper limit is characterized by the following properties:
(U1) for every $\varepsilon>0$ there exists an $N \in \mathbb{Z}$ such that $a_{n}<M+\varepsilon$ for all $n>N$;
(U2) for every $\varepsilon>0$ and every $N \in \mathbb{Z}$ there exists an $n>N$ such that $a_{n}>M-\varepsilon$.
We shall not bother with the proofs of these characterizations, although they follow in a straightforward fashion from the discussion above. Instead, let us return to the study of metric spaces!

Let (X, d) be a metric space.
Definition. A subset A of X is said to be bounded if $\{d(x, y) \mid x, y \in A\}$ is a bounded subset of \mathbb{R}. When A is bounded, the number $\sup \{d(x, y) \mid x, y \in A\}$ is called the diameter of A.

A sequence $\left(x_{n}\right)$ in X is said to be bounded if the set $\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$is bounded. (Recall that a sequence is a family indexed by \mathbb{Z}^{+}, which is the same thing as a function with domain \mathbb{Z}^{+}. We say that the function is bounded if its image is a bounded set.)

Recall that $\left(x_{n}\right)$ is a Cauchy sequence if for all $\varepsilon>0$ there exists $N \in \mathbb{Z}$ such that $d\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m>N$, and that the metric space X is complete if every Cauchy sequence in X has a limit in X.
Lemma. Every Cauchy sequence in a metric space is bounded.
Proof. Let $\left(x_{n}\right)$ be a Cauchy sequence. Choose $N \in \mathbb{Z}^{+}$such that $d\left(x_{n}, x_{m}\right)<1$ for all $n, m \geq N$. Put $C=\max \left\{d\left(x_{1}, x_{N}\right), d\left(x_{2}, x_{N}\right), \ldots, d\left(x_{N-1}, x_{N}\right), 1\right\}$. Then certainly $d\left(x_{n}, x_{N}\right) \leq C$ when $1 \leq n<N$, since $d\left(x_{n}, x_{N}\right)$ is one of the numbers of which C is the maximum. And if $n \geq N$ then (by the choice of N), $d\left(x_{n}, x_{N}\right)<1 \leq C$. Thus $d\left(x_{n}, x_{N}\right)<C$ for all $n \in \mathbb{Z}^{+}$. It follows that for all $r, s \in \mathbb{Z}^{+}$,

$$
d\left(x_{r}, x_{s}\right) \leq d\left(x_{r}, x_{N}\right)+d\left(x_{s}, x_{N}\right) \leq 2 A
$$

Hence the set $\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$is bounded (with diameter at most $2 C$), as required.
It is a fact, known as Cauchy's Principle of Convergence, that every Cauchy sequence in \mathbb{R} converges. In other words, \mathbb{R} is a complete metric space (under the usual metric).
Proposition. The set \mathbb{R}, with the usual metric, is a complete metric space.
Proof. Let $\left(x_{n}\right)$ be a Cauchy sequence in \mathbb{R}. By the Lemma there exists a $C \in \mathbb{R}$ such that $\left|x_{n}-x_{m}\right|<C$ for all $n, m \in \mathbb{Z}^{+}$, and so it follows that $x_{1}-C<x_{n}<x_{1}+C$ for all $n \in \mathbb{Z}^{+}$. Thus the sequence $\left(x_{n}\right)$ possesses a lower limit and an upper limit.

Put $m_{k}=\inf _{n \geq k} x_{n}$ and $M_{k}=\sup _{n \geq k} x_{n}$. Then $m_{k} \leq x_{k} \leq M_{k}$ for all k. Furthermore, $m_{k} \rightarrow m=\liminf _{n \rightarrow \infty} x_{n}$ and $M_{k} \rightarrow M=\limsup _{n \rightarrow \infty} x_{n}$ as $k \rightarrow \infty$.

Let $\varepsilon>0$. Since $\left(x_{n}\right)$ is a Cauchy sequence we may choose $N \in \mathbb{Z}^{+}$such that $\left|x_{n}-x_{m}\right|<\varepsilon$ for all $n, m \geq N$. Then it follows that $x_{N}-\varepsilon<x_{n}<x_{N}+\varepsilon$ for all $n \geq N$. Hence

$$
\begin{aligned}
& M_{N}=\sup _{n \geq N} x_{n} \leq x_{N}+\varepsilon \\
& m_{N}=\inf _{n \geq N} x_{n} \geq x_{N}-\varepsilon
\end{aligned}
$$

So $M_{N}-m_{N} \leq 2 \varepsilon$, and since $m_{N} \leq m \leq M \leq M_{N}$, it follows that $0 \leq M-m \leq 2 \varepsilon$. But ε was an arbitrary positive number; so it follows that $M-m=0$. Now because $m_{k} \leq x_{k} \leq M_{k}$ for all k, and M_{k} and m_{k} both approach $M=m$ as $k \rightarrow \infty$, it follows that x_{k} also approaches this same limit as $k \rightarrow \infty$. We have shown that an arbitrary Cauchy sequence in \mathbb{R} has a limit, as required.

Let $\left(x^{(k)}\right)_{k=1}^{\infty}$ be a sequence in \mathbb{R}^{n}, and let $x^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)\left(\right.$ for each $\left.k \in \mathbb{Z}^{+}\right)$. We have already seen that $\left(x^{(k)}\right)$ converges in \mathbb{R}^{n} relative to the usual metric (or indeed any of the metrics d_{p} for $1 \leq p \leq \infty$) if and only if each sequence $\left(x_{i}^{(k)}\right.$) (for $1 \leq i \leq n$) converges in \mathbb{R}. It is straightforward to show also that $\left(x^{(k)}\right)$ is a Cauchy sequence in \mathbb{R}^{n} if and only if each $\left(x_{i}^{(k)}\right)$ is a Cauchy sequence in \mathbb{R}. These facts combined with the completeness of \mathbb{R} show that \mathbb{R}^{n} is complete also.

