Metric Spaces

Every set of real numbers which has an upper bound has a supremum (least upper bound), and every set of real numbers which has a lower bound has an infimum (greatest lower bound). Some books use the convention that if $A \subseteq \mathbb{R}$ does not have an upper bound then $\sup(A) = \infty$; then to say that $\sup(A) < \infty$ is equivalent to saying that A is bounded above.

If A and B are bounded subsets of \mathbb{R} with $A \subseteq B$ then every upper bound for B is an upper bound for A; so $\sup(B)$ is an upper bound for A, and so $\sup(A)$, the least upper bound for A, is less than or equal to $\sup(B)$. Similarly, $\inf(B)$ is a lower bound for B, and hence a lower bound for A, and therefore less than or equal to $\inf(A)$, the greatest lower bound for A. We have proved the following statement:

If $A \subseteq B \subset \mathbb{R}$ are bounded then $\sup(A) \leq \sup(B)$ and $\inf(A) \geq \inf(B)$.

Now let $(a_n)_{n=1}^{\infty}$ be a bounded sequence in \mathbb{R} . (That is, the set $\{a_n \mid n \in \mathbb{Z}^+\}$ is bounded above and below.) For each $k \in \mathbb{Z}^+$, define $A_k = \{a_n \mid n \geq k\}$; observe that these sets form a decreasing chain $(A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots)$. By the principle enunciated above, their supremums decrease and their infimums increase as k increases. So, defining $M_k = \sup(A_k)$ and $m_k = \inf(A_k)$, we have $m_1 \leq m_2 \leq m_3 \leq \cdots$ and $M_1 \geq M_2 \geq M_3 \geq \cdots$. Note also that for all $i, j \in \mathbb{Z}^+$,

$$m_i \le x_n \qquad \text{for all } n \ge i,$$

$$M_j \ge x_n \qquad \text{for all } n \ge j.$$

This is because if $n \ge i$ then $x_n \in A_i$, and therefore $x_n \ge \inf(A_i) = m_i$, and similarly if $n \ge j$ then $x_n \in A_j$, whence $x_n \le \sup(A_j) = M_j$. Now if we put $n = \max\{i, j\}$ then $n \ge i$ and $n \ge j$ both hold, and so $m_i \le x_n$ and $x_n \le M_j$ also both hold. It follows that $m_i \le M_j$. Note that i and j here are arbitrary positive integers.

The above reasoning has shown that the m_i form an increasing sequence, and every M_j is an upper bound for this sequence. And the M_j form a decreasing sequence, for which every m_i is a lower bound. Since the sequence (m_i) is increasing and bounded above it converges, with limit $m = \sup\{m_i \mid i \in \mathbb{Z}^+\}$. Observe that $m \leq M_j$ for each j (since each M_j is an upper bound, and m the least upper bound, of $\{m_i \mid i \in \mathbb{Z}^+\}$). Now the sequence (M_j) is decreasing and bounded below; so it converges, with limit $M = \inf\{M_j \mid j \in \mathbb{Z}^+\}$. And $m \leq M$, since m is a lower bound, and M the greatest lower bound, of $\{M_j \mid j \in \mathbb{Z}^+\}$. We have thus established the following inequalities:

$$m_1 \le m_2 \le m_3 \le \cdots \le m \le M \le \cdots \le M_3 \le M_2 \le M_1.$$

The number *m* is called the *lower limit* (or *limit inferior*) of the sequence (a_n) , and we write $m = \liminf_{n \to \infty} a_n$. Similarly, *M* is called the *upper limit* (or *limit superior*) of (a_n) , and we write $M = \limsup_{n \to \infty} a_n$. The lower limit is characterized by the following two properties:

(L1) for every $\varepsilon > 0$ there exists an $N \in \mathbb{Z}$ such that $a_n > m - \varepsilon$ for all n > N;

(L2) for every $\varepsilon > 0$ and every $N \in \mathbb{Z}$ there exists an n > N such that $a_n < m + \varepsilon$. Similarly, the upper limit is characterized by the following properties:

(U1) for every $\varepsilon > 0$ there exists an $N \in \mathbb{Z}$ such that $a_n < M + \varepsilon$ for all n > N;

(U2) for every $\varepsilon > 0$ and every $N \in \mathbb{Z}$ there exists an n > N such that $a_n > M - \varepsilon$. We shall not bother with the proofs of these characterizations, although they follow in a straightforward fashion from the discussion above. Instead, let us return to the study of metric spaces! Let (X, d) be a metric space.

Definition. A subset A of X is said to be *bounded* if $\{d(x,y) \mid x, y \in A\}$ is a bounded subset of \mathbb{R} . When A is bounded, the number $\sup\{d(x,y) \mid x, y \in A\}$ is called the *diameter* of A.

A sequence (x_n) in X is said to be bounded if the set $\{x_n \mid n \in \mathbb{Z}^+\}$ is bounded. (Recall that a sequence is a family indexed by \mathbb{Z}^+ , which is the same thing as a function with domain \mathbb{Z}^+ . We say that the function is bounded if its image is a bounded set.)

Recall that (x_n) is a *Cauchy sequence* if for all $\varepsilon > 0$ there exists $N \in \mathbb{Z}$ such that $d(x_n, x_m) < \varepsilon$ for all n, m > N, and that the metric space X is *complete* if every Cauchy sequence in X has a limit in X.

Lemma. Every Cauchy sequence in a metric space is bounded.

Proof. Let (x_n) be a Cauchy sequence. Choose $N \in \mathbb{Z}^+$ such that $d(x_n, x_m) < 1$ for all $n, m \geq N$. Put $C = \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{N-1}, x_N), 1\}$. Then certainly $d(x_n, x_N) \leq C$ when $1 \leq n < N$, since $d(x_n, x_N)$ is one of the numbers of which C is the maximum. And if $n \geq N$ then (by the choice of N), $d(x_n, x_N) < 1 \leq C$. Thus $d(x_n, x_N) < C$ for all $n \in \mathbb{Z}^+$. It follows that for all $r, s \in \mathbb{Z}^+$,

$$d(x_r, x_s) \le d(x_r, x_N) + d(x_s, x_N) \le 2A.$$

Hence the set $\{x_n \mid n \in \mathbb{Z}^+\}$ is bounded (with diameter at most 2C), as required. \Box

It is a fact, known as *Cauchy's Principle of Convergence*, that every Cauchy sequence in \mathbb{R} converges. In other words, \mathbb{R} is a complete metric space (under the usual metric).

Proposition. The set \mathbb{R} , with the usual metric, is a complete metric space.

Proof. Let (x_n) be a Cauchy sequence in \mathbb{R} . By the Lemma there exists a $C \in \mathbb{R}$ such that $|x_n - x_m| < C$ for all $n, m \in \mathbb{Z}^+$, and so it follows that $x_1 - C < x_n < x_1 + C$ for all $n \in \mathbb{Z}^+$. Thus the sequence (x_n) possesses a lower limit and an upper limit.

Put $m_k = \inf_{n \ge k} x_n$ and $M_k = \sup_{n \ge k} x_n$. Then $m_k \le x_k \le M_k$ for all k. Furthermore, $m_k \to m = \liminf_{n \to \infty} x_n$ and $M_k \to M = \limsup_{n \to \infty} x_n$ as $k \to \infty$.

Let $\varepsilon > 0$. Since (x_n) is a Cauchy sequence we may choose $N \in \mathbb{Z}^+$ such that $|x_n - x_m| < \varepsilon$ for all $n, m \ge N$. Then it follows that $x_N - \varepsilon < x_n < x_N + \varepsilon$ for all $n \ge N$. Hence

$$M_N = \sup_{n \ge N} x_n \le x_N + \varepsilon,$$

$$m_N = \inf_{n \ge N} x_n \ge x_N - \varepsilon.$$

So $M_N - m_N \leq 2\varepsilon$, and since $m_N \leq m \leq M \leq M_N$, it follows that $0 \leq M - m \leq 2\varepsilon$. But ε was an arbitrary positive number; so it follows that M - m = 0. Now because $m_k \leq x_k \leq M_k$ for all k, and M_k and m_k both approach M = m as $k \to \infty$, it follows that x_k also approaches this same limit as $k \to \infty$. We have shown that an arbitrary Cauchy sequence in \mathbb{R} has a limit, as required. \Box

Let $(x^{(k)})_{k=1}^{\infty}$ be a sequence in \mathbb{R}^n , and let $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)})$ (for each $k \in \mathbb{Z}^+$). We have already seen that $(x^{(k)})$ converges in \mathbb{R}^n relative to the usual metric (or indeed any of the metrics d_p for $1 \le p \le \infty$) if and only if each sequence $(x_i^{(k)})$ (for $1 \le i \le n$) converges in \mathbb{R} . It is straightforward to show also that $(x^{(k)})$ is a Cauchy sequence in \mathbb{R}^n if and only if each $(x_i^{(k)})$ is a Cauchy sequence in \mathbb{R} . These facts combined with the completeness of \mathbb{R} show that \mathbb{R}^n is complete also.