
Metric Spaces Lecture 15

Subspace topology
Let (X,U) be a topological space. That is, U is a collection of subsets of X satisfying

(T1) X, ∅ ∈ U ,
(T2) whenever (Ai)i∈I is a family of sets in U , then

⋃
i∈I Ai ∈ U , and

(T3) whenever A, B ∈ U , then A ∩B ∈ U .
(Note that (T3) is equivalent to the condition that the intersection of any finite collection
of elements of U is in U , as can easily be proved by induction.)

Suppose now that S is any subset of X, and put V = {S∩A | A ∈ U }. It is not hard
to prove that V is a topology on S. Firstly, since S ⊆ X we have S ∩X = S, while it is
trivial that S ∩ ∅ = ∅. Since X, ∅ ∈ U (since U satisfies (T1)), it follows that S, ∅ ∈ V.
So (T1) holds for V. Next, suppose that (Bi)i∈I is a family of sets in V. For each i ∈ I
there is an Ai ∈ U with Bi = S ∩Ai. Now

⋃
i∈I Ai ∈ U , by (T2) for U , and since

S ∩
⋃
i∈I

Ai =
⋃
i∈I

S ∩Ai =
⋃
i∈I

Bi

it follows that
⋃

i∈I Bi ∈ V. Hence V satisfies (T3). Finally, if P, Q are arbitrary elements
of V then P = S ∩A and Q = S ∩B for some A, B ∈ U , and we see that

P ∩Q = (S ∩A) ∩ (S ∩B) = S ∩ (A ∩B) ∈ V

since A ∩B ∈ U . So V also satisfies (T3), and thus is a topology on S.

Definition. Let (X,U) be a topological space and S a subset of X The topology V on
the set S defined by V = {S ∩A | A ∈ U } (as above) is called the topology on S induced
by the topology U on X. A topological subspace of (X,U) is a topological space of the
form (S,V), where S is a subset of X and V the induced topology. The induced topology
is also sometimes called the relative topology, or the subspace topology . A subset of X is
said to be open relative to S if it is an open set of the subspace topology (so that it is of
the form S ∩A for some A ∈ U).

Recall that if (X, d) is a metric space then there is a standard topology on X derived
from the metric: it consists of those subsets U of X such that for all a ∈ U there is an
ε > 0 such that Bd(a, ε) ⊆ U . Furthermore, if S is any subset of X and d′ the restriction
of d to S, then (S, d′) is a metric space. (We call d′ the metric induced by d.) Now we
can obtain a topology on S in either of two ways: the topology on X derived from the
metric d induces a topology V∞ on S, and there is a topology V∈ on S derived from the
induced metric d′. One would hope that V1 = V2, and this is indeed true. On the one
hand, suppose that A ∈ V2. This means that for all a ∈ A there is a positive number µa

such that Bd′(a, µa) ⊆ A. Now

Bd′(a, µa) = {x ∈ S | d′(x, a) < µa } = {x ∈ S | d(x, a) < µa }
= S ∩ {x ∈ X | d(x, a) < µa } = S ∩Bd(a, µa);

Moreover, A ⊆
⋃

a∈A Bd′(a, µa) (since a ∈ Bd′(a, µa) for each a), and
⋃

a∈A Bd′(a, µa) ⊆ A
(since Bd′(a, µa) ⊆ A for each a, by the choice of µa). Thus

A =
⋃
a∈A

Bd′(a, µa) =
⋃
a∈A

S ∩Bd(a, µa) = S ∩
⋃
a∈A

Bd(a, µa),
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which is an open set of the induced topology V1, since
⋃

a∈A Bd(a, µa) is an open subset
of X. On the other hand, suppose that A ∈ V1, so that A = S ∩ U for some open subset
U of X. Since U is open, for each a ∈ U there is a µ > 0 such that Bd(a, µ) ⊆ U ; in
particular, such a mu exists for each a ∈ A (since A ⊆ U), and we find that

Bd′(a, µ) = S ∩Bd(a, µ) ⊆ S ∩ U = A,

which shows that A ∈ V2.

The following result (for metric spaces) appears as Theorem 3.1 on p. 52 of Choo’s
notes. Note, however, that there is a misprint: the important assumption that f is
continuous was accidentally omitted. We prove the result here in the more general context
of topological spaces.
Proposition. Let X, Y be topological spaces and f :X → Y a continuous mapping. Let
S be any subspace of X, and fS :S → Y the restriction of f . Then fS is continuous.
Proof. Let U be an open subset of Y . By definition,

f−1
S (U) = {x ∈ S | fS(x) ∈ U } = {x ∈ S | f(x) ∈ U }

= S ∩ {x ∈ X | f(x) ∈ U } = S ∩ f−1(U).

Now f−1(U) is an open subset of X since U is open in Y and f :X → Y is continuous.
So S ∩ f−1(U) is an open subset of S (in the subspace topology). Thus we have shown
that f−1

S (U) is open in S whenever U is open in Y ; hence fS is continuous. �

A similarly straightforward result says that the composite of two continous functions
is always continuous.
Proposition. If X, Y and Z are topological spaces, and f :X → Y and g:Y → Z
continuous functions, then the function g ◦ f :X → Z (defined by (g ◦ f)(x) = g(f(x)) for
all x ∈ X) is continuous.
Proof. Our task is to show that (g ◦ f)−1(U) is open in X whenever U is open in Z.

Let U ⊆ Z be open. Then

(g ◦ f)−1(U) = {x ∈ X | (g ◦ f)(x) ∈ U }
= {x ∈ X | g(f(x)) ∈ U }
= {x ∈ X | f(x) ∈ g−1(U) }
= f−1(g−1(U)).

Since g is continuous and U is open it follows that g−1(U) is open. Now since f is
continuous it follows that f−1(g−1(U)) is open. So we have shown that (g ◦ f)−1(U) is
open whenever U is open, as required. �

Bases
If X and Y are topological spaces then there is a natural way to make the Cartesian

product X × Y = { (x, y) | x ∈ X and y ∈ Y } into a topological space. Before we can
discuss this we need to introduce another concept.
Definition. Let X be a topological space. A collection B of open subsets of X is called
a base for the topology on X if every open set can be expressed as a union of sets in B.
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Example. In R the open intervals form a base for the topology. More generally, in any
metric space the open balls form a base for the topology. To prove this one must show
that every open set is expressible as a union of the open balls. The proof of this was
incorporated in one of our proofs above, but it will do us no harm to repeat it!
Proposition. If X is a metric space and U ⊆ X is open, then U is the union of the open
balls it contains.
Proof. On the one hand, the union of all the open balls contained in U is obviously a
subset of U ; on the other, if x ∈ U is arbitrary then x ∈ Int(U) (as every point of an open
set is an interior point), hence x lies in an open ball contained in U , and hence x is in the
union of all the open balls contained in U . �

In many cases when it is desirable to make a set into a topological space, the most
convenient way to do so is to specify a base for the topology, rather than attempt to
describe all open sets directly. The situation with metric spaces illustrates this: open
sets are defined in terms of open balls. One could perhaps manage to give a reasonable
discussion of metric spaces without using the concept of an open set, but one could not
sensibly avoid talking about open balls.

Note that a base for a topology determines the topology uniquely: there cannot be
two different topologies on one set X sharing a common base B. This is because the
open sets of the topology can be characterized as those sets that are unions of sets in B.
(The definition of the concept of a base says that all open sets are unions of sets in B;
on the other hand, since the elements of B are themselves open sets and the union of any
collection of open sets is open, it is also true that every set which is a union of sets in B is
an open set.) However, it is not the case that every collection of subsets of an arbitrary
set X can serve as a base for a topology on X. This is because the intersection of two
open sets has to be open, and it is clear that if B is an arbitrary collection of subsets
of X then there is no guarantee that the intersection of any two elements of B will be
expressible as a union of elements of B. Provided that the collection B does have this
property, and provided that the elements of B cover X, then it will be the case that the
collection B determines a topology on X.
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