Product topology

Recall that in the last lecture we defined the concept of a base for a topology: a collection \mathcal{B} of open sets is called a base if every open set can be expressed as a union of sets in \mathcal{B}. It is natural to ask what conditions a collection of subsets of an arbitrary set X must satisfy in order to be a base for some topology on X. The next proposition provides the answer.
Proposition. Let \mathcal{B} be a collection of subsets of a set X. Then \mathcal{B} is a base for a topology on X if and only if $X=\bigcup_{B \in \mathcal{B}} B$ and for all $B_{1}, B_{2} \in \mathcal{B}$ the set $B_{1} \cap B_{2}$ is a union of sets in \mathcal{B}. When this condition is satisfied, the topology determined by \mathcal{B} consists of all subsets U of X that are expressible as unions of sets in \mathcal{B}. That is, U is open if and only if there is a subcollection \mathcal{D} of \mathcal{B} such that $U=\bigcup_{B \in \mathcal{D}} B$.
Proof. Assume first that \mathcal{B} is a base for a topology. Then the fact that X is open ensures that $X=\bigcup_{B \in \mathcal{B}} B$, and the fact that the intersection of two open sets is open ensures that $B_{1} \cap B_{2}$ is a union of sets in \mathcal{B} whenever $B_{1}, B_{2} \in \mathcal{B}$. So \mathcal{B} satisfies the two specified conditions.

Conversely, suppose that \mathcal{B} satisfies the specified conditions, and define \mathcal{U} to be the collection of all $U \subseteq X$ such that $U=\bigcup_{B \in \mathcal{D}} B$ for some subcollection \mathcal{D} of \mathcal{B}. Taking the subcollection \mathcal{D} to be empty shows that $\emptyset \in \mathcal{U}$, and taking $\mathcal{D}=\mathcal{B}$ shows that $X \in \mathcal{U}$. If $\left(U_{i}\right)_{i \in I}$ is a family of sets such that $U_{i} \in \mathcal{U}$ for each $i \in I$, then for each $i \in I$ there is a subset \mathcal{D}_{i} of \mathcal{B} such that $U_{i}=\bigcup_{B \in \mathcal{D}_{i}} B$, and since

$$
\bigcup_{i \in I} U_{i}=\bigcup_{i \in I} \bigcup_{B \in \mathcal{D}_{i}} B=\bigcup_{B \in \mathcal{D}} B,
$$

where $\mathcal{D}=\bigcup_{i \in I} D_{i}$, it follows that $\bigcup_{i \in I} U_{i} \in \mathcal{U}$. Finally, if U and V are arbitrary sets in \mathcal{U} then $U=\bigcup_{B \in \mathcal{D}} B$ and $V=\bigcup_{C \in \mathcal{E}} C$ for some $\mathcal{D}, \mathcal{E} \subseteq \mathcal{B}$, and it follows that $U \cap V=\bigcup_{B \in \mathcal{D}} \bigcup_{C \in \mathcal{E}} B \cap C$ is a union of sets in \mathcal{B}, since each of the sets $B \cap C$ is a union of sets in \mathcal{B}. Thus $U \cap V \in \mathcal{U}$.

We turn now to the question of how to make the Cartesian product of two topological spaces into a topological space. One's first guess might be that the open sets of $X \times Y$ should be all subsets of $X \times Y$ of the form $U \times V$, where U is an open subset of X and V an open subset of Y. However the union of a collection of sets of the form $U \times V$ is not necessarily also of the same form; this is demonstrated below in the case $X=Y=\mathbb{R}$. So in fact the appropriate way to define a topology on $X \times Y$ is to specify that collection

$$
\mathcal{B}=\{U \times V \mid U \text { is open in } X \text { and } V \text { is open in } Y\}
$$

is a base for the topology, rather than the whole topology.
The open subsets of \mathbb{R} (with the usual topology) are those sets that are disjoint unions of open intervals; so any subset of $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ that has the form $U \times V$ with U and V open in \mathbb{R} will be a disjoint union of open rectangles (where an open rectangle is a set of the form $(a, b) \times(c, d)=\{(x, y) \mid a<x<b$ and $c<x<d\}$, where (a, b) and (c, d) are open intervals in \mathbb{R}). The first diagram below depicts $U \times V$ when U is a disjoint union of three intervals (identified with the subset of the X-axis marked in the diagram) and V a disjoint union of two intervals (identified with a subset of the Y-axis). Now it is
easily seen that any subset \mathbb{R}^{2} that is open in the topology derived from d, the Euclidean metric, can be expressed as a union of open rectangles. As with the proof that open sets are unions of open balls (see last lecture), to prove this it suffices to show that each point of a given open subset U of \mathbb{R}^{2} lies in an open rectangle contained in U. Now if $(x, y) \in U$ then $B_{d}((x, y), \varepsilon) \subseteq U$ for some $\varepsilon>0$, and if we put $\delta=\varepsilon / \sqrt{2}$ then it can be seen that $(x-\delta, x+\delta) \times(y-\delta, y+\delta) \subset U$. Thus sets which are expressible as unions of open rectangles need not be expressible as disjoint unions of open rectangles: there are open sets in \mathbb{R}^{2} (such as circles) that do not have the form $U \times V$ for open subsets U and V of $\mathbb{R} . \dagger$

The Cartesian product of $(-3,-1) \cup(0.5,1.4) \cup(2.3,3.0)$ and $(-1.2,-0.2) \cup(0.7,1.4)$.

For any point x of an open set U in \mathbb{R}^{2} one can find a rectangle containing x and contained in U.
So U is the union of the rectangles it contains.

The following proposition is needed to justify the definition of the product topology foreshadowed above.
Proposition. Let X and Y be topological spaces, and let \mathcal{B} be the collection of all subsets of $X \times Y$ of the form $U \times V$ such that U is an open subset of X and V an open subset of Y. Then \mathcal{B} is a base for a topology on $X \times Y$.

[^0]Proof. Since X is an open subset of X and Y is an open subset of Y, it follows that the set $X \times Y$ itself is in the collection \mathcal{B}. Hence $X \times Y=\bigcup_{B \in \mathcal{B}} B$. By our previous proposition above, it remains to show that the intersection of any elements $B_{1}, B_{2} \in \mathcal{B}$ is a union of elements of \mathcal{B}.

In fact it is easily seen that if $B_{1}, B_{2} \in \mathcal{B}$ then $B_{1} \cap B_{2} \in \mathcal{B}$. To prove this, let U_{1}, U_{2} be open subsets of X and V_{1}, V_{2} open subsets of Y such that $B_{1}=U_{1} \times V_{1}$ and $B_{2}=U_{2} \times V_{2}$. Then

$$
\begin{aligned}
B_{1} \cap B_{2} & =\left\{(x, y) \mid(x, y) \in U_{1} \times V_{1} \text { and }(x, y) \in U_{2} \times V_{2}\right\} \\
& =\left\{(x, y) \mid x \in U_{1}, y \in V_{1} \text { and } x \in U_{2}, y \in V_{2}\right\} \\
& =\left\{(x, y) \mid x \in U_{1} \cap U_{2} \text { and } y \in V_{1} \cap V_{2}\right\} \\
& =\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right),
\end{aligned}
$$

and this is in the collection \mathcal{B} since $U_{1} \cap U_{2}$ is open in X (since U_{1} and U_{2} both are) and $V_{1} \cap V_{2}$ is open in Y (since V_{1} and V_{2} both are).
Definition. The topology on $X \times Y$ determined by the base \mathcal{B} described in the above proposition is called the product topology.

Let X and Y be topological spaces, and suppose that a topology is defined on $X \times Y$ that is not necessarily the product topology. There are two obvious projection maps, π_{X} and π_{Y}, defined by

$$
\begin{aligned}
\pi_{X}: X \times Y & \rightarrow X \\
(x, y) & \mapsto x
\end{aligned}
$$

and

$$
\begin{aligned}
\pi_{Y}: X \times Y & \rightarrow Y \\
(x, y) & \mapsto y .
\end{aligned}
$$

It is natural to ask under what circumstances these mappings are continuous.
We know that π_{X} is continuous if and only if $\pi_{X}^{-1}(U)$ is open whenever U is open, and π_{Y} is continuous if and only if $\pi_{Y}^{-1}(V)$ is open whenever V is open. Now observe that if U is any open subset of X then

$$
\pi_{X}^{-1}(U)=\left\{(x, y) \in X \times Y \mid \pi_{X}(x, y) \in U\right\}=\{(x, y) \in X \times Y \mid x \in U\}=U \times Y
$$

and similarly if V is any open subset of Y then $\pi_{Y}^{-1}(V)=X \times V$. So π_{X} and π_{Y} are both continuous if and only if $U \times Y$ and $V \times X$ are open subsets of $X \times Y$ for all open subsets U of X and V of Y. Since $(U \times Y) \cap(V \times X)=U \times V$, if $U \times Y$ and $X \times V$ are both open then $U \times V$ is open; conversely, if all subsets of $X \times Y$ of the form $U \times V$, with U open in X and V open in Y, are open in $X \times Y$, then, in particular, taking $V=Y$ we see that $U \times Y$ is open whenever U is open, and, similarly, taking $U=X$, we see that $X \times V$ is open whenever V is open.

We conclude from this that π_{X} and π_{Y} are both continuous precisely if $U \times V$ is open in $X \times Y$ whenever U is open in X and V is open in Y. Since these sets $U \times V$ form a base for the product topology, we see that the product topology on $X \times Y$ makes π_{X} and π_{Y} continuous. Furthermore, any other topology \mathcal{T} on $X \times Y$ for which π_{X} and π_{Y} are both continuous must have the property that any subset of $X \times Y$ that is open in the product topology must be open in \mathcal{T}. The product topology is the coarsest (fewest open sets) such that the projections are continuous, every other topology with this property must be finer (more open sets).

Remarks

1. In future, whenever we deal with the Cartesian product of two topological spaces, unless explicitly stated otherwise, we shall regard the Cartesian product as a topological space via the product topology.
2. If $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces then we can make $X \times Y$ into a metric space by defining $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left(d\left(x_{1}, x_{2}\right), d\left(y_{1}, y_{2}\right)\right)$. With this definition, the open balls in $X \times Y$ are precisely the sets of the form $U \times V$ such that U is an open ball in X and V an open ball in Y, since for all $a \in X, b \in Y$ and $\varepsilon>0$,

$$
\begin{aligned}
B_{d}((x, y), \varepsilon) & =\{(x, y) \mid d((a, b),(x, y))<\varepsilon\} \\
& \left.=\left\{(x, y) \mid d_{X}(a, x)<\varepsilon \text { and } d_{Y}(b, y)\right)<\varepsilon\right\} \\
& =B_{d_{X}}(a, \varepsilon) \times B_{d_{Y}}(b, \varepsilon)
\end{aligned}
$$

Consequently the topology on $X \times Y$ determined by these open balls is precisely the product topology (where the topology on X is determined by the open balls in X and the topology on Y is determined by the open balls in Y).
Note that there are several other ways to define metrics on the Cartesian product. For example, for any $p \geq 1$ we could define

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt[p]{\left(d\left(x_{1}, x_{2}\right)^{p}+d\left(y_{1}, y_{2}\right)^{p}\right)}
$$

furthermore, taking the limit as $p \rightarrow \infty$ gives back our previous definition. These alternatives are all topologically equivalent, in that they give rise to the same collections of open sets in $X \times Y . \ddagger$
Theorem. Let X, Y and Z be topological spaces, and let $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ be functions. Define $f \times g: Z \rightarrow X \times Y$ by $(f \times g)(z)=(f(z), g(z))$ for all $z \in Z$. If f and g are both continuous then $f \times g$ is continuous.
Proof. Suppose that f and g are continuous, and let O be an open set in $X \times Y$. Then O is a union $\bigcup_{i \in I}\left(U_{i} \times V_{i}\right)$ (for some indexing set I), where each U_{i} is open in X and each V_{i} open in Y. Now

$$
\begin{aligned}
(f \times g)^{-1}(O) & =\left\{z \in Z \mid(f \times g)(z) \in \bigcup_{i \in I}\left(U_{i} \times V_{i}\right)\right\} \\
& =\left\{z \in Z \mid(f \times g)(z) \in\left(U_{i} \times V_{i}\right) \text { for some } i \in I\right\} \\
& =\bigcup_{i \in I}(f \times g)^{-1}\left(U_{i} \times V_{i}\right)
\end{aligned}
$$

and furthermore

$$
\begin{aligned}
(f \times g)^{-1}\left(U_{i} \times V_{i}\right) & =\left\{z \in Z \mid(f(z), g(z)) \in\left(U_{i} \times V_{i}\right)\right\} \\
& =\left\{z \in Z \mid f(z) \in U_{i} \text { and } g(z) \in V_{i}\right\} \\
& =f^{-1}\left(U_{i}\right) \cap g^{-1}\left(V_{i}\right) .
\end{aligned}
$$

This is an open set, for each i, since the intersection of two open sets is open, and the fact that f is continuous tells us that $f^{-1}\left(U_{i}\right)$ is open, and the fact that g is continuous tells
\ddagger Just as, for all $p \geq 1$, the metrics d_{p} on \mathbb{R}^{n} all determine the same topology on \mathbb{R}^{n}-see Lecture 7.
us that $g^{-1}\left(V_{i}\right)$ is open. Thus $(f \times g)^{-1}(O)$ is a union of open sets, and therefore open. As this applies for all open subsets O of $X \times Y$, it follows that $f \times g$ is continuous.

The converse of the above result is also valid: if $f \times g$ is continuous then f and g are both continuous. The point is that $f=\pi_{X} \circ(f \times g)$, since for all $z \in Z$,

$$
\left.\left(\pi_{X} \circ(f \times g)\right)(z)=\pi_{X}(f \times g)(z)\right)=\pi_{X}((f(z), g(z))=f(z) .
$$

But the composite of two continuous functions is continuous; so since π_{X} is continuous, if $f \times g$ is also continous then it follows that f is continuous. A similar proof applies for g.

The theorem above makes it easy for us to determine if a function from \mathbb{R} to \mathbb{R}^{n} is continuous, since such functions are usually specified by giving their component functions. For example, the function $\mathbb{R} \rightarrow \mathbb{R}^{3}$ given by $x \mapsto\left(e^{x}, x^{2}+1,(\sin x-x)^{2}\right)$ is continuous, since $x \mapsto e^{x}, x \mapsto x^{2}+1$ and $x \mapsto(\sin x-x)^{2}$ are all continuous. (Strictly, to prove this we must make two applications of the theorem, and identify \mathbb{R}^{3} with $\mathbb{R} \times(\mathbb{R} \times \mathbb{R})$) or $(\mathbb{R} \times \mathbb{R}) \times \mathbb{R}$ in the obvious way.)

Homeomorphisms

A homeomorphism from one topological space to another is a bijective function f such that f and f^{-1} are both continuous. It is important to note that continuity of f does not guarantee continuity of f^{-1}; we give an example to demonstrate this before discussing homeomorphisms.
let d be the usual metric on \mathbb{R} and d^{\prime} the discrete metric (for which $d^{\prime}(x, y)=1$ whenever $x \neq y)$. Observe that for all $x \in R$ the open ball $B_{d^{\prime}}(x, 1 / 2)$ is just the singleton set $\{x\}$. Thus all singleton sets, and consequently all sets, are open with respect to the topology on \mathbb{R} derived from d^{\prime}. Let the topological space X be \mathbb{R} equipped with this topology, and let Y be \mathbb{R} equipped with the usual topology (derived from the metric d). Let $f: X \rightarrow Y$ be the identity function $\mathbb{R} \rightarrow \mathbb{R}$. Obviously f is bijective, its inverse $g: Y \rightarrow X$ being also the identity function. Furthermore, if U is any open subset of Y then $f^{-1}(U)$ is an open subset of X, since every subset of X is open. Thus f is continous. However, g is not continous, since $\{0\}$ is an open subset of X, but $g^{-1}(\{0\})=\{0\}$ is not an open subset of Y.

We give also another example, this time without resorting to the use of the discrete topology. Let $X=[0,1] \cup(2,3]$ and $Y=[0,2]$, both regarded as metric subspaces of \mathbb{R} with the usual metric. Since $Y=[0,1] \cup(1,2]$ it is easy to see that the function $f: X \rightarrow Y$ defined by

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ x-1 & \text { if } 2<x \leq 3\end{cases}
$$

is bijective, its inverse $g: Y \rightarrow \mathrm{X}$ being given by

$$
g(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ x+1 & \text { if } 1<x \leq 2 .\end{cases}
$$

We show that f is continuous by constructing an obviously continuous function $\tilde{f}: \mathbb{R} \rightarrow Y$ such that the restriction of \tilde{f} to X coincides with f. Indeed, let $\tilde{f}: \mathbb{R} \rightarrow[0,2]$ be given by

$$
\tilde{f}(x)= \begin{cases}0 & \text { if } x<0, \\ x & \text { if } 0 \leq x \leq 1, \\ 1 & \text { if } 1<x \leq 2, \\ x-1 & \text { if } 2<x \leq 3, \text { and } \\ 2 & \text { if } 3<x\end{cases}
$$

If one draws the graph of \tilde{f} one sees that it is continuous; a rigorous proof is tedious rather than difficult, and so we omit it.

On the other hand, the inverse function g is not continuous. The intuitive reason for this is that g breaks the interval into two pieces. To prove it rigorously, note first that since X and Y are subspaces of \mathbb{R}, the rules for the subspace topology apply: a subset of X is open if and only if it has the form $X \cap U$ where U is an open subset of \mathbb{R}, and a subset of Y is open if and only if it has the form $Y \cap U$ with U open in \mathbb{R}. Thus $X \cap(1 / 2,3 / 2)=(1 / 2,1]$ is open in X. Now $g^{-1}((1 / 2,1])=(1 / 2,1]$, and this is not an open subset of Y : the point $1 \in(1 / 2,1]$ is not an interior point of $(1 / 2,1]$ since every open ball $B(1, \varepsilon)$ (where $\varepsilon>0$) contains points of $Y=[0,2]$ that are not in $(1 / 2,1]$. Thus it is not true that U open in X implies that $g^{-1}(U)$ is open in Y; so g is not continuous.

[^0]: \dagger By contrast, in \mathbb{R} any union of open intervals is also a disjoint union of open intervals. In the present context this should be regarded as anomolous behaviour: it is not usually the case that if \mathcal{B} is a base for a topology on a set X then all open sets are disjoint unions of sets in \mathcal{B}.

