
Metric Spaces Lecture 20

To end our section on completeness, we give one more application of the Contraction
Mapping Theorem.

As we mentioned in Lecture 9, it is a straightforward matter to use the completeness
of R to deduce that Rn is also complete, relative to any of the metrics dp. For the present
example we shall identify Rn with the set of all n-component column vectors over R, and
we shall use the metric d = d1; thus, for all x, y ∈ Rn,

d(x, y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn|

where xi, yi are the i-th components of the vectors x, y (for 1 ≤ i ≤ n).
Let C be an n× n matrix over R, and let Cij denote the (i, j)-entry of C. Suppose

that C satisfies the condition

n∑
i=1

|Cij | < 1 for all j ∈ {1, 2, . . . , n}. (1)

Observe that this is a condition on the columns of C; the example in Choo’s notes uses
instead a condition on the rows of C, giving a similar appearing but different result to
that which we are about to prove. The only difference between the proofs is the choice of
metric.

Put K = max1≤j≤n(
∑n

i=1 |Cij |, and note that K < 1, in view of (1). We shall show
that, for any b ∈ Rn, the mapping f : Rn → Rn defined by

f(x) = Cx + b (for all x ∈ Rn)

is a contraction mapping. Indeed, d(f(x), f(y)) ≤ Kd(x, y) for all x, y ∈ Rn, where K
is the constant defined above. By the Contraction Mapping Theorem it follows that f
has a unique fixed point in Rn; that is, the system of linear equations x = Cx + b has a
unique solution x, irrespective of the value of b. Since this linear system can be rewritten
as (I − C)x = b, we can deduce that the coefficient matrix I − C must be invertible.†

Let x, y ∈ Rn, and put z = f(x) = Cx + b and w = f(y) = Cy + b. Then

d(f(x), f(y)) = d(z, w) =
n∑

i=1

|zi − wi|.

Now z − w = (Cx + b) − (Cy + b) = C(x − y), and the i-th component of this vector
equation tells us that

zi − wi =
n∑

j=1

Cij(xj − yj) (for all i ∈ {1, 2, . . . , n}).

† Similarly, the result proved is Choo’s notes implies that I −C is invertible if the transpose
of C satisfies condition (1). Since the matrix I − C is invertible if and only if its transpose is
invertible, the result Choo proves can be deduced from the one we shall prove, and vice versa.
A condition for the invertibility of I − C which is not obviously equivalent to these two can be
obtained by using instead the Euclidean metric on Rn; see Tutorial 10.
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Therefore |zi − wi| ≤
∑n

j=1 |Cij | |xj − yj |, and since
∑n

j=1 |Cij | ≤ K (by the definition
of K) we deduce that

d((f(x), f(y)) =
n∑

i=1

|zi − wi| ≤
n∑

i=1

( n∑
j=1

|Cij | |xj − yj |
)

=
n∑

j=1

( n∑
i=1

|Cij | |xj − yj |
)

=
n∑

j=1

(
|xj − yj |

n∑
i=1

|Cij |
)

≤
n∑

j=1

|xj − yj |K = Kd(x, y),

showing, as required, that f is a contraction mapping.

Compactness
There is a famous theorem of real analysis, known as the Heine-Borel Covering The-

orem, which says that if C is any closed and bounded subset of Euclidean space Rn, and
if (Vi)i∈I is any family of open sets such that

C ⊆
⋃
i∈I

Vi,

then there is a finite subset {i1, i2, . . . , ik} of the indexing set I such that

C ⊆ Vi1 ∪ Vi2 ∪ · · · ∪ Vik
.

This is certainly a rather technical statement, and as such its usefulness may not be
immediately apparent. It is, in fact, a very powerful result, and in due course we shall
show how other basic results in real analysis may be derived as corollaries of the Heine-
Borel theorem.

Observe that in the statement of the Heine-Borel theorem there is no restriction
on the size of the set I. This makes it relatively easy to satisfy the hypotheses of the
theorem. For example, suppose that C is a closed and bounded set in Rn (such as a
closed interval in R) and suppose that for each point x ∈ C we choose some extremely
tiny open ball B(x, εx). The set C has quite likely got uncountably many points; so we
have got an extremely large number of these tiny open balls. The balls cover the set C,
in the sense that C ⊆

⋃
x∈C B(x, εx), since if x0 is any element of C then x0 ∈ B(x0, εx0),

which certainly implies that x0 ∈
⋃

x∈C B(x, εx). We have covered C with a probably
uncountable number of tiny open sets. Not a hard thing to do. The Heine-Borel Theorem
can now be applied, and it says that we do not need to use all these sets in order cover C.
Some finite number of them will suffice. It is possible to throw away all but a finite number
of the open balls B(x, εx) and still be left with a covering of C. Finiteness conditions
like this, guaranteeing that some finite subset of a given set will be adequate for some
purpose, are potentially very handy tools for proving theorems. So it is with Heine-Borel.

When trying to generalize standard facts from real analysis to spaces other than Rn,
some replacement for the Heine-Borel theorem may be needed. In particular, results
about closed intervals in R can often be extended to those subsets C of a topological
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space that possess the Heine-Borel property: for every open covering of C there is a finite
subcovering.
Definition. Let X be a topological space. A subset C of X is said to be compact if
every open covering of C has a finite subcovering. That is, C is compact if and only if
the following holds: for every set I and indexed family (Vi)i∈I of open subsets of X, if
C ⊆

⋃
i∈I Vi then there exists a finite subset J of I such that C ⊆

⋃
i∈J Vi.

In Rn a set is compact if and only if it is closed and bounded. In other more
complicated spaces, such as spaces of functions, closed and bounded is not usually enough
to give compactness. However, it is usually true that compact sets are closed and bounded.
(Boundedness, of course, is defined in terms of distance, and thus only makes sense in
metric spaces.)

Recall that a topological space X is Hausdorff if for all a, b ∈ X, if a 6= b then there
exist open sets U , V such that a ∈ U and b ∈ V , and U ∩ V = ∅.†
Proposition. Compact subsets of Hausdorff spaces are closed.
Proof. Let X be Hausdorff and C ⊆ X with C compact. We shall prove that X \ C is
open, by proving that each point of X \ C is an interior point of X \ C.

Let a ∈ X \C be arbitrary. It will suffice to show that there exists an open set U with
a ∈ U ⊆ X \ C, for this implies a ∈ Int(X \ C). Now for each point b ∈ C we certainly
have b 6= a, and since X is Hausdorff there exist open sets Ub, Vb such that a ∈ Ub and
b ∈ Vb, and Ub ∩ Vb = ∅. For each c ∈ C we have

c ∈ Vc ⊆
⋃
b∈C

Vb,

and thus C ⊆
⋃

b∈C Vb. In other words, since the sets Vb are open, the indexed family
(Vb)b∈C constitutes an open covering of C. Since C is compact it follows that there exists
a finite subcover. That is, there exists a finite set Q = {b1, b2, . . . , bn} such that

C ⊆
⋃
b∈Q

Vb = Vb1 ∪ Vb2 ∪ · · · ∪ Vbn .

We put U =
⋂

b∈Q Ub = Ub1 ∪Ub2 ∪ · · · ∪Ubn
, and proceed to show that U has the desired

properties: U is open, a ∈ U and U ⊆ X \ C.
Since a ∈ Ub for all b, it follows immediately that a ∈

⋂
b∈Q Ub = U . It is an axiom

of topology that the intersection of any finite collection of open sets is open; so since each
Ub is open and the set Q is finite, it follows that

⋂
b∈Q Ub = U is open. The intersection

of a collection of sets is contained in each of those sets; so U ⊆ Ub for each b ∈ Q, and so,
by the way that Ub and Vb were chosen,

U ∩ Vb ⊆ Ub ∩ Vb = ∅

for all b ∈ Q. Thus, since C ⊆
⋃

b∈Q Vb,

U ∩ C ⊆ U ∩
⋃
b∈Q

Vb =
⋃
b∈Q

U ∩ Vb = ∅.

Thus U ⊆ X \ C, which was the last property we had to establish. �

† The standard weak pun is that a and b can be housed off from each other.
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