Recall that a subset A if a metric space X is said to be bounded if there exists a constant K with $d(x, y) \leq K$ for all $x, y \in A$, and if A is bounded then the diameter of A is defined by $\operatorname{diam}(A)=\sup _{x, y \in A} d(x, y)$.
Proposition. If A is a compact subset of a metric space X then A is bounded.
Proof. Choose any point x_{0} in X-the result is clearly trivial if $X=\emptyset$-and consider the family of all open balls $B\left(x_{0}, n\right)$, for positive integers n. For each $a \in A$ the distance $d\left(x_{0}, a\right)$ is some real number, and we may choose a positive integer k such that $d\left(x_{0}, a\right)<k$. Then $a \in B\left(x_{0}, k\right) \subseteq \bigcup_{n=1}^{\infty} B\left(x_{0}, n\right)$, and since this holds for all $a \in A$ it follows that $A \subseteq \bigcup_{n=1}^{\infty} B\left(x_{0}, n\right)$. Since A is compact it follows that there exists a finite subset J of \mathbb{Z}^{+}such that $A \subseteq \bigcup_{n \in J} B\left(x_{0}, n\right)$. Now let K be the maximum element of this finite set of numbers J. For all $a \in A$ we have $x \in B\left(x_{0}, n\right)$ for some $n \in J$, and so $d\left(x_{0}, a\right)<n \leq K$. This shows that A is bounded, with diameter at most $2 K$, since if $a, b \in A$ then $d(a, b) \leq d(a, x)+d(b, x)<2 K$.

Our next result is needed for the proof of the Heine-Borel Covering Theorem. It should have really been proved in the section on completeness, since it is not concerned directly with compactness (and completeness is needed).
Cantor's Intersection Theorem. Let (X, d) be a complete metric space, and let $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots$ be an infinite decreasing chain of nonempty, closed, bounded subsets of X. Suppose further that $\lim _{n \rightarrow \infty} \operatorname{diam}\left(A_{n}\right)=0$. Then there exists $x \in X$ such that $\bigcap_{n=1}^{\infty} A_{n}=\{x\}$.
Proof. The sets A_{n} are all nonempty; so for each $n \in \mathbb{Z}^{+}$we may choose a point $a_{n} \in A_{n}$. Our strategy is to show that $\left(a_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence; its limit will be the point x that appears in the theorem statement.

Let $\varepsilon>0$, and choose $N \in \mathbb{Z}^{+}$such that $\operatorname{diam}\left(A_{n}\right)<\varepsilon$ for all $n \geq N$; the hypothesis that $\lim _{n \rightarrow \infty} \operatorname{diam}\left(A_{n}\right)=0$ guarantees that such an N exists. Now for all $m, n \geq N$ we have

$$
\begin{gathered}
a_{m} \in A_{m} \subseteq A_{N} \\
a_{n} \in A_{n} \subseteq A_{N}
\end{gathered}
$$

and therefore $d\left(a_{m}, a_{n}\right) \leq \operatorname{diam}\left(A_{N}\right)<\varepsilon$. Since ε was arbitrary this shows that $\left(a_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence, and since X is complete it follows that $\lim _{n \rightarrow \infty} a_{n}$ exists. Let x be this limit.

Removing a finite number of terms from a sequence does not change its limit; so for all $m \in \mathbb{Z}^{+}$the sequence $\left(a_{n}\right)_{n=m}^{\infty}$ has limit x. All the terms of this sequence lie in A_{m}, since $a_{n} \in A_{n} \subseteq A_{m}$ whenever $n \geq m$. By a proposition we proved in Lecture 8 , it follows that the limit x is an element of $\overline{A_{m}}$, the closure of A_{m}. But A_{m} is closed; so $x \in A_{m}$, and since this holds for all $m \in \mathbb{Z}^{+}$it follows that $x \in \bigcap_{m=1}^{\infty} A_{m}$. Since $\bigcap_{m=1}^{\infty} A_{m} \subseteq A_{n}$ for all $n \in \mathbb{Z}^{+}$, if $y \in \bigcap_{m=1}^{\infty} A_{m}$ then $y, x \in A_{n}$ for all $n \in A_{n}$, and so

$$
0 \leq d(x, y) \leq \operatorname{diam}\left(A_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

So $d(x, y)=0$, and so $x=y$. This shows that x is the only point of $\bigcap_{n=1}^{\infty} A_{n}$, and so $\bigcap_{n=1}^{\infty} A_{n}=\{x\}$, as required.

Our next objective is to prove the Heine-Borel Covering Theorem, which says that closed, bounded subsets of \mathbb{R}^{n} are compact.

Let $d=d_{\infty}$ be the sup metric on \mathbb{R}^{n}. Then for any any point $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ and $r \in \mathbb{R}$ the set H of all points $x \in \mathbb{R}^{n}$ of distance at most r from a is the Cartesian product of the closed intervals $\left[a_{i}-r, a_{i}+r\right]$ in \mathbb{R} :

$$
\begin{aligned}
H=\left\{x \in \mathbb{R}^{n} \mid d(x, a) \leq r\right\} & =\left[a_{1}-r, a_{1}+r\right] \times\left[a_{2}-r, a_{2}+r\right] \times \cdots \times\left[a_{n}-r, a_{n}+r\right] \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n} \mid a_{i}-r \leq x_{i} \leq a_{i}+r \text { for all } i\right\}\right.
\end{aligned}
$$

This is a line segment if $n=1$, a square if $n=2$ and a cube if $n=3$. For general n we shall use the term "hypercube". Observe that H can be written as a union of 2^{n} hypercubes of diameter $\frac{1}{2} \operatorname{diam}(H)$; the cases $n=1,2$ and 3 are illustrated in the following diagram:

To be specific, if for each i we define $A_{i}^{1}=\left[a_{i}-r, a_{i}\right]$ and $A_{i}^{2}=\left[a_{i}, a_{i}+r\right]$, then

$$
\begin{aligned}
H & =\left(A_{1}^{1} \cup A_{1}^{2}\right) \times\left(A_{2}^{1} \cup A_{2}^{2}\right) \times \cdots \times\left(A_{n}^{1} \cup A_{n}^{2}\right) \\
& =\bigcup_{\varepsilon_{1} \in\{1,2\}} \bigcup_{\varepsilon_{2} \in\{1,2\}} \cdots \bigcup_{\varepsilon_{n} \in\{1,2\}} A_{1}^{\varepsilon_{1}} \times A_{2}^{\varepsilon_{2}} \times \cdots \times A_{n}^{\varepsilon_{n}}
\end{aligned}
$$

(There are two possible values for each ε_{i}, and so 2^{n} terms altogether in this union.)
Heine-Borel Covering Theorem. Let C be a subset of \mathbb{R}^{n} that is bounded and closed (with respect to the usual topology). Then C is compact.
Proof. Suppose, for a contradiction, that C is closed and bounded but not compact. Then there is some open covering of C with no finite subcovering. Choose such a covering: $\left(V_{i}\right)_{i \in I}$ is a family of open sets such that
(i) $C \subseteq \bigcup_{i \in I} V_{i}$, and
(ii) there is no finite subset J of I with $C \subseteq \bigcup_{i \in J} V_{i}$.

Of course, (ii) implies that C is nonempty, for otherwise $C \subseteq \bigcup_{i \in J} V_{i}$ would hold with $J=\emptyset$. Note also that since C is bounded we may choose a closed hypercube H with the property that $C \subseteq H$: choose any $a \in C$, and let H consist of points of distance at most $\operatorname{diam}(C)$ from a. Let $D=\operatorname{diam}(H)$. (Recall that we are using the sup metric.)

Write $C=C_{0}$. Our strategy is to produce an infinite decreasing chain of closed, bounded, nonempty sets C_{k}, each covered by $\left(V_{i}\right)_{i \in I}$ but by no finite subfamily of this family. They will be chosen in such a way that $\operatorname{diam}\left(C_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$, so that Cantor's Intersection Theorem will be applicable. Indeed, the following properties will hold for all $k \in \mathbb{Z}^{+}$.
(a) $C_{k} \subseteq \bigcup_{i \in I} V_{i}$;
(b) there is no finite subset J of I with $C_{k} \subseteq \bigcup_{i \in J} V_{i}$;
(c) C_{k} is closed and nonempty, and $C_{k} \subseteq C_{k-1}$;
(d) $C_{k} \subseteq H_{k}$, for some closed hypercube H_{k} of diameter $\frac{1}{2^{k}} D$.

The final contradiction will then arise as follows. Cantor's theorem yields a point x that lies in each C_{k}, and hence in some V_{i}. Since V_{i} is open there must be an $\varepsilon>0$ such that
all points whose distance from x is less than ε are in V_{i}, and since the diameters of the C_{k} approach 0 this implies that $C_{k} \subseteq V_{i}$ for k large enough. But this contradicts (b) above.

Write $H=H_{0}$ as the union of 2^{n} hypercubes of diameter half $\operatorname{diam}(H)$, in the manner described above. Thus $H_{0}=\bigcup_{j=1}^{2^{n}} H_{j}^{(0)}$, where each $H_{j}^{(0)}$ is a closed hypercube of diameter $\frac{1}{2} D$. Then since $C \subseteq H$,

$$
C=C \cap H_{0}=\bigcup_{1 \leq j \leq 2^{n}}\left(C \cap H_{j}^{(0)}\right)
$$

Suppose that for each $j \in\left\{1,2, \ldots, 2^{n}\right\}$ a finite subset J_{j} of I exists with the property that $C \cap H_{j}^{(0)} \subseteq \bigcup_{i \in J_{j}} V_{i}$. Then

$$
C=\bigcup_{1 \leq j \leq 2^{n}}\left(C \cap H_{j}^{(0)}\right) \subseteq \bigcup_{1 \leq j \leq 2^{n}}\left(\bigcup_{i \in J_{j}} V_{i}\right)=\bigcup_{i \in J_{1} \cup \cdots \cup J_{2^{n}}} V_{i}
$$

contradicting (ii), since the set $J=J_{1} \cup \cdots \cup J_{2^{n}}$ is a finite union of finite sets, and hence finite. So for at least one $j \in\left\{1,2, \ldots, 2^{n}\right\}$ there is no finite subset J of I such that $C \cap H_{j}^{(0)} \subseteq \bigcup_{i \in J} V_{i}$. Now if we define $H_{1}=H_{j}^{(0)}$ and $C_{1}=C \cap H_{1}$ then the properties (a), (b), (c) and (d) above are satisfied for $k=1$. Property (a) holds since $C_{1} \subseteq C$, and $C \subseteq \bigcup_{i \in I} V_{i}$ by (i). Property (b) holds by the choice of the j in the definition of C_{1}. Property (b) implies that $C_{1} \neq \emptyset$, and since C_{1} is defined as the intersection of two closed sets, one of which is $C_{0}=C$, it follows that C_{1} is closed and $C_{1} \subseteq C_{0}$. Thus Property (c) holds. And Property (d) holds since $C_{1}=C \cap H_{1}$, and $H_{1}=H_{j}^{(0)}$ has diameter $\frac{1}{2} \operatorname{diam}(H)=\frac{1}{2} D$.

We simply repeat this argument to establish (a), (b), (c) and (d) for all values of k. Proceeding inductively, we assume that (a), (b), (c) and (d) hold with $k-1$ in place of k. Write $H_{k-1}=\bigcup_{j=0}^{2^{n}} H_{j}^{(k-1)}$, where each $H_{j}^{(k-1)}$ is a hypercube of diameter $\frac{1}{2} \operatorname{diam}\left(H_{k-1}\right)=\frac{1}{2}\left(\frac{D}{2^{k-1}}\right)=\frac{1}{2^{k}} D$. Now

$$
C_{k-1}=C_{k-1} \cap H_{k-1}=\bigcup_{1 \leq j \leq 2^{n}}\left(C_{k-1} \cap H_{j}^{(k-1)}\right)
$$

and since C_{k-1} is not covered by any finite collection of the sets V_{i}, it follows that at least one of the sets $C_{k-1} \cap H_{j}^{(k-1)}$ is not covered by any finite collection of the V_{i} 's. Choose j accordingly, and define $H_{k}=H_{j}^{(k-1)}$ and $C_{k}=C_{k-1} \cap H_{k}$. As above, we se that (a), (b), (c) and (d) are satisfied. By induction, they hold for all $k \in \mathbb{Z}^{+}$.

Since $C_{k} \subseteq H_{k}$ for all k it follows that $0 \leq \operatorname{diam}\left(C_{k}\right) \leq \operatorname{diam}\left(H_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Since \mathbb{R}^{n} is complete, and since each C_{k} is closed, bounded and nonempty, and satisfies $C_{k} \subseteq C_{k-1}$, it follows from Cantor's Intersection Theorem that there exists a point x with $x \in C_{k}$ for all k. As $\bigcup_{i} V_{i} \supseteq C \supseteq C_{1} \supseteq C_{2} \supseteq \cdots$, we have $x \in \bigcup_{i} V_{i}$, and so $x \in V_{j}$ for some $j \in I$. Since V_{j} is open there exists an $\varepsilon>0$ with $B(x, \varepsilon) \subseteq V_{j}$. Since $\operatorname{diam}\left(C_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ there exists a $k \in \mathbb{Z}^{+}$with $\operatorname{diam}\left(C_{k}\right)<\varepsilon$. Note that $x \in C_{k}$ (since $x \in C_{m}$ for all m). Now for all $y \in C_{k}$ we have $d(y, x) \leq \operatorname{diam}\left(C_{k}\right)<\varepsilon$, and so

$$
y \in B(x, \varepsilon) \subseteq V_{j}
$$

Thus $C_{k} \subseteq V_{j}$; so if we put $J=\{j\}$ then J is a finite subset of I and $C_{k} \subseteq V_{j}=\bigcup_{i \in J} V_{i}$. This contradicts Property (b) for C_{k}, thereby completing the proof of the Heine-Borel Theorem.

