Metric Spaces

Recall that a subset A if a metric space X is said to be bounded if there exists a constant K with $d(x, y) \leq K$ for all $x, y \in A$, and if A is bounded then the diameter of A is defined by diam $(A) = \sup_{x, y \in A} d(x, y)$.

Proposition. If A is a compact subset of a metric space X then A is bounded.

Proof. Choose any point x_0 in X—the result is clearly trivial if $X = \emptyset$ —and consider the family of all open balls $B(x_0, n)$, for positive integers n. For each $a \in A$ the distance $d(x_0, a)$ is some real number, and we may choose a positive integer k such that $d(x_0, a) < k$. Then $a \in B(x_0, k) \subseteq \bigcup_{n=1}^{\infty} B(x_0, n)$, and since this holds for all $a \in A$ it follows that $A \subseteq \bigcup_{n=1}^{\infty} B(x_0, n)$. Since A is compact it follows that there exists a finite subset J of \mathbb{Z}^+ such that $A \subseteq \bigcup_{n \in J} B(x_0, n)$. Now let K be the maximum element of this finite set of numbers J. For all $a \in A$ we have $x \in B(x_0, n)$ for some $n \in J$, and so $d(x_0, a) < n \leq K$. This shows that A is bounded, with diameter at most 2K, since if $a, b \in A$ then $d(a, b) \leq d(a, x) + d(b, x) < 2K$.

Our next result is needed for the proof of the Heine-Borel Covering Theorem. It should have really been proved in the section on completeness, since it is not concerned directly with compactness (and completeness is needed).

Cantor's Intersection Theorem. Let (X,d) be a complete metric space, and let $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$ be an infinite decreasing chain of nonempty, closed, bounded subsets of X. Suppose further that $\lim_{n\to\infty} \operatorname{diam}(A_n) = 0$. Then there exists $x \in X$ such that $\bigcap_{n=1}^{\infty} A_n = \{x\}$.

Proof. The sets A_n are all nonempty; so for each $n \in \mathbb{Z}^+$ we may choose a point $a_n \in A_n$. Our strategy is to show that $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence; its limit will be the point x that appears in the theorem statement.

Let $\varepsilon > 0$, and choose $N \in \mathbb{Z}^+$ such that diam $(A_n) < \varepsilon$ for all $n \ge N$; the hypothesis that $\lim_{n\to\infty} \operatorname{diam}(A_n) = 0$ guarantees that such an N exists. Now for all $m, n \ge N$ we have

$$a_m \in A_m \subseteq A_N$$
$$a_n \in A_n \subseteq A_N,$$

and therefore $d(a_m, a_n) \leq \text{diam}(A_N) < \varepsilon$. Since ε was arbitrary this shows that $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence, and since X is complete it follows that $\lim_{n\to\infty} a_n$ exists. Let x be this limit.

Removing a finite number of terms from a sequence does not change its limit; so for all $m \in \mathbb{Z}^+$ the sequence $(a_n)_{n=m}^{\infty}$ has limit x. All the terms of this sequence lie in A_m , since $a_n \in A_n \subseteq A_m$ whenever $n \ge m$. By a proposition we proved in Lecture 8, it follows that the limit x is an element of $\overline{A_m}$, the closure of A_m . But A_m is closed; so $x \in A_m$, and since this holds for all $m \in \mathbb{Z}^+$ it follows that $x \in \bigcap_{m=1}^{\infty} A_m$. Since $\bigcap_{m=1}^{\infty} A_m \subseteq A_n$ for all $n \in \mathbb{Z}^+$, if $y \in \bigcap_{m=1}^{\infty} A_m$ then $y, x \in A_n$ for all $n \in A_n$, and so

$$0 \le d(x, y) \le \operatorname{diam}(A_n) \to 0 \text{ as } n \to \infty.$$

So d(x, y) = 0, and so x = y. This shows that x is the only point of $\bigcap_{n=1}^{\infty} A_n$, and so $\bigcap_{n=1}^{\infty} A_n = \{x\}$, as required.

Our next objective is to prove the Heine-Borel Covering Theorem, which says that closed, bounded subsets of \mathbb{R}^n are compact.

Let $d = d_{\infty}$ be the sup metric on \mathbb{R}^n . Then for any any point $a = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$ and $r \in \mathbb{R}$ the set H of all points $x \in \mathbb{R}^n$ of distance at most r from a is the Cartesian product of the closed intervals $[a_i - r, a_i + r]$ in \mathbb{R} :

$$H = \{ x \in \mathbb{R}^n \mid d(x, a) \le r \} = [a_1 - r, a_1 + r] \times [a_2 - r, a_2 + r] \times \dots \times [a_n - r, a_n + r]$$

= $\{ (x_1, x_2, \dots, x_n \mid a_i - r \le x_i \le a_i + r \text{ for all } i \}.$

This is a line segment if n = 1, a square if n = 2 and a cube if n = 3. For general n we shall use the term "hypercube". Observe that H can be written as a union of 2^n hypercubes of diameter $\frac{1}{2}$ diam(H); the cases n = 1, 2 and 3 are illustrated in the following diagram:

To be specific, if for each i we define $A_i^1 = [a_i - r, a_i]$ and $A_i^2 = [a_i, a_i + r]$, then

$$H = (A_1^1 \cup A_1^2) \times (A_2^1 \cup A_2^2) \times \dots \times (A_n^1 \cup A_n^2)$$
$$= \bigcup_{\varepsilon_1 \in \{1,2\}} \bigcup_{\varepsilon_2 \in \{1,2\}} \cdots \bigcup_{\varepsilon_n \in \{1,2\}} A_1^{\varepsilon_1} \times A_2^{\varepsilon_2} \times \dots \times A_n^{\varepsilon_n}$$

(There are two possible values for each ε_i , and so 2^n terms altogether in this union.)

Heine-Borel Covering Theorem. Let C be a subset of \mathbb{R}^n that is bounded and closed (with respect to the usual topology). Then C is compact.

Proof. Suppose, for a contradiction, that C is closed and bounded but not compact. Then there is some open covering of C with no finite subcovering. Choose such a covering: $(V_i)_{i \in I}$ is a family of open sets such that

- (i) $C \subseteq \bigcup_{i \in I} V_i$, and
- (ii) there is no finite subset J of I with $C \subseteq \bigcup_{i \in J} V_i$.

Of course, (ii) implies that C is nonempty, for otherwise $C \subseteq \bigcup_{i \in J} V_i$ would hold with $J = \emptyset$. Note also that since C is bounded we may choose a closed hypercube H with the property that $C \subseteq H$: choose any $a \in C$, and let H consist of points of distance at most diam(C) from a. Let D = diam(H). (Recall that we are using the sup metric.)

Write $C = C_0$. Our strategy is to produce an infinite decreasing chain of closed, bounded, nonempty sets C_k , each covered by $(V_i)_{i \in I}$ but by no finite subfamily of this family. They will be chosen in such a way that diam $(C_k) \to 0$ as $k \to \infty$, so that Cantor's Intersection Theorem will be applicable. Indeed, the following properties will hold for all $k \in \mathbb{Z}^+$.

- (a) $C_k \subseteq \bigcup_{i \in I} V_i;$
- (b) there is no finite subset J of I with $C_k \subseteq \bigcup_{i \in J} V_i$;
- (c) C_k is closed and nonempty, and $C_k \subseteq C_{k-1}$;
- (d) $C_k \subseteq H_k$, for some closed hypercube H_k of diameter $\frac{1}{2^k}D$.

The final contradiction will then arise as follows. Cantor's theorem yields a point x that lies in each C_k , and hence in some V_i . Since V_i is open there must be an $\varepsilon > 0$ such that all points whose distance from x is less than ε are in V_i , and since the diameters of the C_k approach 0 this implies that $C_k \subseteq V_i$ for k large enough. But this contradicts (b) above.

Write $H = H_0$ as the union of 2^n hypercubes of diameter half diam(H), in the manner described above. Thus $H_0 = \bigcup_{j=1}^{2^n} H_j^{(0)}$, where each $H_j^{(0)}$ is a closed hypercube of diameter $\frac{1}{2}D$. Then since $C \subseteq H$,

$$C = C \cap H_0 = \bigcup_{1 \le j \le 2^n} \left(C \cap H_j^{(0)} \right).$$

Suppose that for each $j \in \{1, 2, ..., 2^n\}$ a finite subset J_j of I exists with the property that $C \cap H_j^{(0)} \subseteq \bigcup_{i \in J_i} V_i$. Then

$$C = \bigcup_{1 \le j \le 2^n} \left(C \cap H_j^{(0)} \right) \subseteq \bigcup_{1 \le j \le 2^n} \left(\bigcup_{i \in J_j} V_i \right) = \bigcup_{i \in J_1 \cup \dots \cup J_{2^n}} V_i,$$

contradicting (ii), since the set $J = J_1 \cup \cdots \cup J_{2^n}$ is a finite union of finite sets, and hence finite. So for at least one $j \in \{1, 2, \ldots, 2^n\}$ there is no finite subset J of I such that $C \cap H_j^{(0)} \subseteq \bigcup_{i \in J} V_i$. Now if we define $H_1 = H_j^{(0)}$ and $C_1 = C \cap H_1$ then the properties (a), (b), (c) and (d) above are satisfied for k = 1. Property (a) holds since $C_1 \subseteq C$, and $C \subseteq \bigcup_{i \in I} V_i$ by (i). Property (b) holds by the choice of the j in the definition of C_1 . Property (b) implies that $C_1 \neq \emptyset$, and since C_1 is defined as the intersection of two closed sets, one of which is $C_0 = C$, it follows that C_1 is closed and $C_1 \subseteq C_0$. Thus Property (c) holds. And Property (d) holds since $C_1 = C \cap H_1$, and $H_1 = H_j^{(0)}$ has diameter $\frac{1}{2} \operatorname{diam}(H) = \frac{1}{2}D$.

We simply repeat this argument to establish (a), (b), (c) and (d) for all values of k. Proceeding inductively, we assume that (a), (b), (c) and (d) hold with k-1 in place of k. Write $H_{k-1} = \bigcup_{j=0}^{2^n} H_j^{(k-1)}$, where each $H_j^{(k-1)}$ is a hypercube of diameter $\frac{1}{2} \operatorname{diam}(H_{k-1}) = \frac{1}{2}(\frac{D}{2^{k-1}}) = \frac{1}{2^k}D$. Now

$$C_{k-1} = C_{k-1} \cap H_{k-1} = \bigcup_{1 \le j \le 2^n} \left(C_{k-1} \cap H_j^{(k-1)} \right),$$

and since C_{k-1} is not covered by any finite collection of the sets V_i , it follows that at least one of the sets $C_{k-1} \cap H_j^{(k-1)}$ is not covered by any finite collection of the V_i 's. Choose jaccordingly, and define $H_k = H_j^{(k-1)}$ and $C_k = C_{k-1} \cap H_k$. As above, we se that (a), (b), (c) and (d) are satisfied. By induction, they hold for all $k \in \mathbb{Z}^+$.

Since $C_k \subseteq H_k$ for all k it follows that $0 \leq \operatorname{diam}(C_k) \leq \operatorname{diam}(H_k) \to 0$ as $k \to \infty$. Since \mathbb{R}^n is complete, and since each C_k is closed, bounded and nonempty, and satisfies $C_k \subseteq C_{k-1}$, it follows from Cantor's Intersection Theorem that there exists a point x with $x \in C_k$ for all k. As $\bigcup_i V_i \supseteq C \supseteq C_1 \supseteq C_2 \supseteq \cdots$, we have $x \in \bigcup_i V_i$, and so $x \in V_j$ for some $j \in I$. Since V_j is open there exists an $\varepsilon > 0$ with $B(x,\varepsilon) \subseteq V_j$. Since diam $(C_k) \to 0$ as $k \to \infty$ there exists a $k \in \mathbb{Z}^+$ with diam $(C_k) < \varepsilon$. Note that $x \in C_k$ (since $x \in C_m$ for all m). Now for all $y \in C_k$ we have $d(y, x) \leq \operatorname{diam}(C_k) < \varepsilon$, and so

$$y \in B(x,\varepsilon) \subseteq V_j.$$

Thus $C_k \subseteq V_j$; so if we put $J = \{j\}$ then J is a finite subset of I and $C_k \subseteq V_j = \bigcup_{i \in J} V_i$. This contradicts Property (b) for C_k , thereby completing the proof of the Heine-Borel Theorem.