
Metric Spaces Lecture 22

Topological spaces were invented because they provide a natural context in which
continuity can be defined and discussed. As we have seen, the concept of an “open set” is
the key ingredient in this. Since compactness is defined in terms of open sets, it is natural
to investigate relationships between compact sets and continuous functions.
Proposition. Let X and Y be topological spaces and f :X → Y a continuous mapping.
If C is any compact subset of X then f(C) is a compact subset of Y .
Proof. Let (Vi)i∈I be any open covering of f(C). Then f−1(Vi) = {x ∈ X | f(x) ∈ Vi } is
open in X, for each i ∈ I, since Vi is open in Y and f is continuous. If c ∈ C is arbitrary,
then f(c) ∈ f(C) ⊆

⋃
i∈I Vi, and so f(c) ∈ Vi for some i ∈ I. Hence c ∈ f−1(Vi)

for some i ∈ I, and thus c ∈
⋃

i∈I f−1(Vi). As c ∈ C was arbitrary, this shows that
C ⊆

⋃
i∈I f−1(Vi). So

(
f−1(Vi)

)
i∈I

is an open covering of C, and since C is compact
there is a finite subset J of I such that C ⊆

⋃
i∈J f−1(Vi).

Now let y ∈ f(C) be arbitrary. Then y = f(x) for some x ∈ C, and since
C ⊆

⋃
i∈J f−1(Vi) we have x ∈ f−1(Vi) for some i ∈ J . That is, f(x) ∈ Vi for some i ∈ J .

Thus we have shown that y = f(x) ∈
⋃

i∈J Vi, and since y was an arbitrary element of
f(C) we conclude that f(C) ⊆

⋃
i∈J Vi. Thus, starting from an arbitrary open covering

(Vi)i∈I of f(C) we have produced a finite subcovering. So f(C) is compact, as claimed.
�

Proposition. Let X be a topological space and Y a subspace of X. If C ⊆ Y then C is
compact as a subset of X if and only if it is compact as a subset of Y .
Proof. Suppose that C is compact as a subset of X; we shall show that it is compact as
a subset of Y . Let (Vi)i∈I be an arbitrary family of subsets of Y such that C ⊆

⋃
i∈I Vi

and each Vi is an open subset of Y . By the definition of the subspace topology, for each
i ∈ I there is an open subset Wi of X such that Vi = Y ∩Wi. Then

C ⊆
⋃
i∈I

Vi ⊆
⋃
i∈I

Wi

and since C is compact in X it follows that there is a finite subset J of I such that
C ⊆

⋃
i∈J Wi. Now since C ⊆ Y we find that

C = Y ∩ C ⊆ Y ∩
⋃
i∈J

Wi =
⋃
i∈J

(Y ∩Wi) =
⋃
i∈J

Vi.

So the open covering (Vi)i∈I of C has a finite subcovering, namely (Vi)i∈J . Since this
holds for all coverings of C by open subsets of Y , we have shown that C is compact as a
subset of Y .

Conversely, suppose that C is compact as a subset of Y . Let (Wi)i∈I be a family of
open subsets of X that covers C. By the definition of the subspace topology, Y ∩Wi is
an open subset of Y , and since C ⊆ Y and C ⊆

⋃
i∈I Wi it follows that

C ⊆ Y ∩
⋃
i∈I

Wi =
⋃
i∈I

(Y ∩Wi).

Thus (Y ∩Wi)i∈I is an covering of C by open subsets of Y , and since C is compact as a
subset of Y it follows that there is a finite subset J of I such that C ⊆

⋃
i∈Y (Y ∩ Wi).
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And since Y ∩ Wi ⊆ Wi for each i we deduce that C ⊆
⋃

i∈Y Wi, so that (Wi)i∈J is a
finite subcovering of the original open covering of C. Hence C is compact as a subset
of X, as required. �

As a corollary of the above two results we obtain a generalization of the familiar
result that a continuous real valued function on a closed interval in R has a maximum
value.
Corollary. Let f be a continuous real valued function on a nonempty compact subset C
of a topological space X. Then f has a maximum on C; that is, there exists c ∈ C such
that f(c) ≥ f(x) for all x ∈ C.
Proof. By the preceding proposition, f(C) is a nonempty compact subset of R, and so
by the Heine-Borel theorem it is closed and bounded. Put M = sup f(C). Since f(C) is
closed, M ∈ f(C). (If M were in the open set R\f(C) then there would be some interval
(M − ε, M + ε) ⊆ R \ f(C), and then M − ε would be an upper bound for f(C) less
than M , which was defined as the least upper bound.) Since M ∈ f(C) there is a c ∈ C
with f(c) = M , and we see that f(c) = sup f(C) ≥ f(x) for all x ∈ C, as required. �

Connectedness

Definition. A topological space X is connected if it is not the union of two nonempty
disjoint open sets.

Since connectedness is defined just in terms of open sets, it is an example of a “topo-
logical property”: a property which, if possessed by a topological space X, must be
possessed also by any topological space homeomorphic to X. Topological spaces X and Y
are homeomorphic if and only if there is a bijective correspondence X ↔ Y that preserves
open sets, in the sense that each subset of X is open if and only if the corresponding
subset of Y is open. (This is equivalent to saying that the function from X to Y and its
inverse from Y to X are both continuous.) Suppose that such a correspondence exists.
Then if U, V are any two subsets of X, and U ′, V ′ the corresponding subsets of Y , then
X = U ∪V if and only if Y = U ′ ∪V ′, and U ∩V is empty if and only if U ′ ∩V ′ is empty;
furthermore, U and V are open if and only if U ′ and V ′ are open. So X is disconnected
if and only if Y is disconnected.

The fact that homeomorphisms preserve connectedness can often be used to help
prove that spaces are not homeomorphic. There are examples of such proofs in the
tutorial exercises.

A subset A of a topological space X is said to be connected if it is a connected space.
(That is, connected in the subspace topology.) Recall that the subsets of A that are open
in the subspace topology are those of the form A ∩ U , where U is open in X. So A is
not connected if there exist U1, U2, open sets in X, such that A ∩ U1 and A ∩ U2 are
both nonempty, A = (A ∩ U1) ∪ (A ∩ U2), and (A ∩ U1) ∩ (A ∩ U2) = ∅. This simplifies
marginally: A is not connected if and only if there exist open sets U1 and U2 such that
A ∩ U1 and A ∩ U2 are both nonempty, A ⊆ U1 ∩ U2 and A ∩ (U1 ∩ U2) = ∅.

The following simple way of characterizing disconnected sets, sometimes enables
proofs to be shortened (albeit marginally). It links connectedness with continuity.
Proposition. A topological space X is disconnected if and only if there is a continuous
surjective function from X to the two-element discrete topological space.
Proof. Let S = {0, 1} be equipped with the discrete topology, so that {0} and {1}
are both open sets. If X is disconnected then there exist disjoint nonempty open sets
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U1, U2 ⊆ X with X = U1 ∪ U2, and so we may define a function f :X → {0, 1} by

f(x) =
{

0 if x ∈ U1,
1 if x ∈ U2.

Then f is surjective since U1 and U2 are nonempty. To show that f is continous we must
show that the preimages of all open subsets of {0, 1} are open, and this is trivial since
{0, 1} has only four subsets altogether. Obviously f−1(∅) = ∅ and f−1({0, 1}) = X are
both open, and, by the way that f was defined, f−1({0}) = U1 and f−1({1}) = U2 are
also both open.

Conversely, suppose that there exists a continuous surjective function f :X → {0, 1}.
Define U1 = f−1({0}) and U2 = f−1({1}).† Then U1 and U2 are open, since they are
continuous preimages of open sets, disjoint because there can be no x ∈ X such that f(x)
is both 0 and 1, and nonempty since f is surjective. Finally, if x ∈ X is arbitrary then
either f(x) = 0, giving x ∈ U1, or f(x) = 1, giving x ∈ U2. So X = U1 ∪ U2, and so X is
disconnected. �

† Some authors, including (regrettably) myself, sometimes write f−1(y) rather than f−1({y})
for the set {x | f(x) = y }. This practice is not to be recommended, since if f is bijective, so that
an inverse function exists, then f−1(y) should be an element of X rather than a single element
subset of X.
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