
Metric Spaces Lecture 24

The familiar Intermediate Value Theorem of elementary calculus says that if a real
valued function f is continuous on the interval [a, b] ⊆ R then it takes each value between
f(a) and f(b). As our next result shows, the critical fact is that the domain of f , the
interval [a, b], is a connected space, for the theorem generalizes to real-valued functions
on any connected space.
The Intermediate Value Theorem. Suppose that f :X → R is continuous, where X
is a nonempty connected space, and let a, b ∈ X. If y ∈ R and f(a) ≤ y ≤ f(b) then there
is an x ∈ X such that f(x) = y.
Proof. Since X is connected and f is continuous it follows that f(X) is connected (by a
result we proved last time). Note that f(X) ⊆ R, since f is a function from X to R, and
f(X) is nonempty, since f(a) and f(b) are in f(X). It follows that f(X) is an interval,
since (as we proved last time) all nonempty connected subsets of R are intervals. As we
pointed out last time, intervals are characterized by the property that any point lying
between two points of an interval is also in the interval. Thus since f(a) ≤ y ≤ f(b) and
f(a) and f(b) are points of the interval f(X) we conclude that y ∈ f(X) also; that is,
y = f(x) for some x ∈ X, as claimed. �

It is intuitively reasonable that if connected sets overlap then their union ought to
be connected. It is quite straightforward to prove this rigorously. A result along these
lines was given in Tutorial 11, Exercise 4. For variety, we present here a formulation of
the proof that is a little different from the one that appears in the tutorial solutions. We
have also slightly strengthened the statement of the result.
Proposition. Suppose that (Ai)i∈I is a family of connected subsets of a topological
space X, and suppose that for all i, j ∈ I there is a finite sequence i = i0, i1, . . . , in = j in
I such that Aik−1 ∩Aik

6= ∅ for all k ∈ {1, 2, . . . , n}. Then the set
⋃

i∈I Ai is connected.
Proof. Put A =

⋃
i∈I Ai, and let f :A → {0, 1} be a continuous function (the topology

on {0, 1} being the discrete topology). Let i ∈ I be arbitrary. Since Ai is connected and
the restriction of f to Ai is a continuous function Ai → {0, 1}, this restriction cannot be
surjective (for otherwise Ai ∩ f−1({0}) and Ai ∩ f−1({1}) would be disjoint nonempty
open subsets of Ai whose union is Ai). So there is a ci, which is either 0 or 1, such that
f(a) = ci for all a ∈ Ai.

Now let i, j ∈ I be arbitrary. The hypotheses ensure that there exists a finite sequence
i = i0, i1, . . . , in = j in I such that Aik−1 ∩Aik

6= ∅ for all k ∈ {1, 2, . . . , n}, and choosing
a ∈ Aik−1 ∩Aik

we see that f(a) = cik−1 (since a ∈ Aik−1) and f(a) = cik
(since a ∈ Aik

).
So cik−1 = cik

, and since this holds for all k from 1 to n we have that

ci0 = ci1 = · · · = cin−1 = cin
,

whence ci = cj . Since i and j were arbitrary, we have shown that all the ci’s have the
same value; that is, ci = c for all i, where c ∈ {0, 1} is fixed. If now a ∈ A is arbitrary,
then a ∈ Ai for some i ∈ I (since A =

⋃
i∈I Ai), and so f(a) = ci = c. So f(A) = {c}

(either {0} or {1}), and therefore f is not surjective. So there is no surjective continuous
function A → {0, 1}, and so A is connected. �

Intuitively, points in the closure of a set A should be thought of as having points of A
arbitrarily close to them. But are they connected to A? More precisely, if A is connected,
is it necessarily true that A is connected? We shall prove that the answer to this is yes,

–1–

Metric Spaces
Lectures given at the University of Sydney for the course Maths 3901, based on notes by K. G. Choo. Copyright 1999. Robert Brian Howlett.



for the technical meaning that we have given the word “connected”. But whether or not
this accords with our (vague) intuitive concept of connectedness is somewhat unclear. It
is not true that if A is path-connected (see below for the definition of this) then A is
necessarily path-connected.

Proposition. Suppose that A is a connected subset of a topological space X. Then every
set B such that A ⊆ B ⊆ A is also connected.

Proof. Suppose that A ⊆ B ⊆ A, and suppose that there exist open sets U1 and U2

with B ⊆ U1 ∪ U2 and B ∩ U1 ∩ U2 = ∅. We shall prove that either B ∩ U1 = ∅ or else
B ∩ U2 = ∅; this will show that B is connected, for if it were disconnected there would
exist such sets U1 and U2 with B ∩ U1 and B ∩ U2 both nonempty.

Since A ⊆ B ⊆ U1 ∪U2 and A∩U1 ∩U2 ⊆ B ∩U1 ∩U2 = ∅ we see that A ⊆ U1 ∪U2

and A∩U1∩U2 = ∅. Since A is connected it follows that either A∩U1 = ∅ or A∩U2 = ∅.
Suppose first that A ∩ U1 = ∅. Then A ⊆ (X \ U1); but X \ U1 is closed, and, by
the definition of the closure of a set (see Lecture 5), A is contained in all closed sets
containing A. So A ⊆ (X \ U1); that is, A ∩ U1 = ∅. Since B ⊆ A it follows that
B ∩ U1 = ∅ also. In the alternative case, A ∩ U2 = ∅, a completely analogous argument
yields B ∩ U2 = ∅; hence either B ∩ U1 = ∅ or B ∩ U2 = ∅, as required. �

Corollary. If A and B are connected subsets of a topological space and A contains a
point of B then A ∪B is connected.

Proof. Suppose that x ∈ B ∩ A. Since B ⊆ {x} ∪ B ⊆ B, and B is connected,
it follows that {x} ∪ B is connected. Furthermore, since A = A ∪ {x}, we see that
A ∪ B = (A ∪ {x}) ∪ B = A ∪ ({x} ∪ B). So A ∪ B is the union of the sets A and
{x} ∪ B, which are both connected, and which have nonempty intersection (since both
sets contain x). So A ∪B is connected. �

Path-connected spaces

Let X be a topological space. A path in X is a continuous function γ: [0, 1] → X.
We say that the path goes from the point γ(0) to the point γ(1); we can intuitively think
of γ(t) as the position, at time t, of a particle that is moving around in the space X.

The image of a path γ: [0, 1] → X is called a curve in X. That is, the curve determined
by γ is the set γ([0, 1]) ⊆ X. Whereas a path is a function, a curve is a set. Note that
since we require paths to be continuous functions, and since the continuous image of a
connected set is necessarily connected, it follows that a curve in a topological space X is
always a connected subset of X.

Definition. A space X is said to be path-connected if for every a, b ∈ X there is a path
from a to b.

That is, X is path connected if for every a and b in X there is a continuous function
γ from [0, 1] to X with γ(0) = a and γ(1) = b. Intuitively, this means that a particle can
move continuously from any point in X to any other point in X without leaving X.

Theorem. Every path-connected space is connected.

Proof. Suppose, for a contradiction, that X is path-connected but not connected. Since
it is not connected, there exists a continuous surjective map f from X to the discrete
two-element space {0, 1}. Now let a, b ∈ X with f(a) = 0 and f(b) = 1. Since X is
path-connected, there exists a path γ: [0, 1] → X with γ(0) = a and γ(1) = b. Since
composites of continuous functions are continuous, it follows that f ◦ γ: [0, 1] → {0, 1} is
a continuous function, and it is also surjective since (f ◦ γ)(0) = f(γ(0)) = f(a) = 0 and
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(f ◦ γ)(1) = f(γ(1)) = f(b) = 1. But this contradicts the fact that the interval [0, 1] is
connected. �

We shall show that path-connectedness is a stronger condition than connectedness.
For this purpose it is sufficient to give an example of a connected space that is not path-
connected. In R2, let A = { (x, sin(1/x)) | 0 < x ≤ (1/π) }, and let B = A ∪ {(0, 0)}.
Since the interval (0, 1/π) is a connected set, and since x → (x, sin(1/x)) is a continuous
function that maps this interval onto the set A, it follows that A is connected (since
continuous images of connected sets are connected). If we can show that (0, 0) is in
the closure of A then it will follow that A ⊆ B ⊆ A, and hence that B is connected.
To show that (0, 0) ∈ A it suffices to find a sequence (an)∞n=1 of points in A such that
lim

n→∞
an = (0, 0). But if x = 1/(nπ), where n ∈ Z+, then sin(1/x) = sin(nπ) = 0, and

so the point an = (1/(nπ), 0) is in the set A; moreover, it is clear that an → (0, 0) as
n →∞, as required.

We have shown that the set B is connected. It turns out that it is not path connected.
The proof presented here was not done in the lecture (though it may be done as an example
in Lecture 25 or 26.

It is understood (and was implicitly assumed above) that we are dealing with the
usual topologies for subsets of R and R2. We shall use d to denote the Euclidean metrics
on both R and R2; it will always be clear from the context which one is meant.

Suppose, for a contradiction, that a continuous function γ: [0, 1] → B exists satisfying
γ(0) = (0, 0) and γ(1) = ((1/π), 0). Let T = γ−1({(0, 0)}) = { t ∈ [0, 1] | γ(t) = (0, 0) }.
Note that 0 ∈ T , since γ(0) = (0, 0) by hypothesis. The set {(0, 0)} is a closed subset
of B, since it is true in every metric space that single-element subsets are closed. Since
γ is continuous, and continuous preimages of closed sets are closed, it follows that T is a
closed subset of [0, 1]. Since [0, 1] itself is a closed subset of R it follows that T is a closed
subset of R.† We have already observed that T is nonempty, and it is bounded above,
since 1 is an upper bound for any subset of [0, 1]. So T has a supremum. Since T is closed
we know that sup T ∈ T . (See the solutions to Tutorial 11 (Question 2) for a proof of
this.)

Define t0 = sup T . Since t0 ∈ T we know that γ(t0) = (0, 0). Since γ(1) = (1/π, 0)
(by hypothesis), we know that t0 6= 1, and so 0 ≤ t0 < 1. Furthermore, if t0 < t ≤ 1 then
t /∈ T , since t0 is an upper bound for T , and so γ(t) 6= (0, 0). So for all t ∈ (t0, 1] we have
γ(t) ∈ B \ {(0, 0)} = { (x, sin(1/x)) | 0 < x ≤ (1/π) }.

For all t ∈ [0, 1], write γ(t) = (X(t), Y (t)), so that X and Y are real valued functions
on the interval [0, 1]. The projection map η: R2 → R given by (x, y) 7→ x (for all x and y)
is continuous, and since the function X is the composite η1 ◦γ, and γ is also continuous, it
follows that X is continuous. Since γ(t0) = (0, 0) we have X(t0) = 0 and Y (t0) = 0, and
since γ(t) ∈ { (x, sin(1/x)) | 0 < x ≤ (1/π) } for all t ∈ (t0, 1] we see that X(t) ∈ (0, 1/π]
and Y (t) = sin(1/X(t)) for all t ∈ (t0, 1].

Since γ is continuous at t0, there exists δ > 0 such that d(γ(t), γ(t0)) < 1 for all
t ∈ [0, 1] with d(t, t0) < δ. Writing t1 = min(t0 + δ, 1), we have that X(t0) = 0 and
X(t1) > 0. By the Intermediate Value Theorem, for every real number x satisfying
X(t0) < x < X(t1) there is a t ∈ (t0, t1) such that X(t) = x. We can choose an integer n

† The topology on [0, 1] is its topology as a subspace of R, and so closed subsets of [0, 1] have
the form [0, 1] ∩ F , where F is closed in R. But the intersection of two closed sets is closed; so
any such set is also closed in R.
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such that 0 < 2/((4n + 1)π) < X(t1) (since 2/((4n + 1)π) → 0 as n →∞), and conclude
that there is a t ∈ (t0, t1) with X(t) = 2/((4n + 1)π). Moreover, this gives

Y (t) = sin(1/X(t)) = sin(2nπ + π
2 ) = 1,

and hence γ(t) = (x, 1), where x = 2/((4n + 1)π). Observe that

d(γ(t), γ(t0)) = d((0, 0), (x, 1)) =
√

x2 + 1 > 1.

But since t ∈ (t0, t1) we have d(t, t0) < d(t1, t0) ≤ δ; so, by the way δ was chosen,
d(γ(t), γ(t0)) < 1. So we have obtained a contradiction, as desired.

More on compactness
Proposition. Let X be a topological space, and C a compact subset of X. If A is an
infinite subset of C then A has at least one point of accumulation in C.
Proof. Suppose, for a contradiction, that no point of C is an accumulation point of A.
So, if c is any point of C, it is not true that every open neighbourhood of c contains a
point of A \ {c}. It follows that for each c ∈ C we may choose an open set Uc such that
c ∈ Uc and Uc ∩A \ {c} = ∅. That is, Uc ∩A ⊆ {c}.

If U =
⋃

c∈C Uc then for each c ∈ C we have c ∈ Uc ⊆ U . Thus the family of open
sets (Uc)c∈C forms a covering of C, and because C is compact it follows that there is
a finite subcovering. So there exists a finite subset P = {c1, c2, . . . , cn} of C such that
C ⊆

⋃
c∈P Uc. Now A ⊆ C, and hence

A = A ∩ C ⊆ A ∩
⋃
c∈P

Uc =
⋃
c∈P

(A ∩ Uc) ⊆
⋃
c∈P

{c} = P.

But A was assumed to be infinite, whereas P is finite; so we have obtained a contradiction.
�

Corollary. Let C be a compact subset of a metric space X. Every infinite sequence
(an)∞n=1 in C has a subsequence that converges to a point of C.
Proof. Let A = { an | n ∈ Z+ }, the set of points of C that occur as terms of the
sequence. The sequence is infinite, but it is possible that the set A is finite; if so, there
must be at least one a ∈ A such that an = a for infinitely many values of n. That is,
in this case there exists an infinite sequence of positive integers n1 < n2 < · · · such that
ani

= a for all i. Clearly, the subsequence (ani
)∞i=1 of (an) is then convergent, its limit

being a (which is an element of C).
We are left with the case that the set A is infinite. The proposition then guarantees

the existence of a point c ∈ C that is an accumulation point of A. Every open neighbou-
hood of c then contains a point of A. We can thus choose an infinite increasing sequence
of positive integers as follows: let n1 = 1, and for each i > 1 choose ni so that ani

is in the
open ball with centre x and radius 1

2d(x, ani−1). That is, ani
is any point of A that lies

in this ball. A straightforward induction shows that d(x, ani) < 2−(i−1)d(x, a1) for all i,
and hence d(x, ani) → 0 as i → ∞. That is, the subsequence (ani)

∞
i=1 of (an) converges

to the point x ∈ C. �

A subset S of a metric space X is said to be sequentially compact if every infinite
sequence in S has a subsequence converging to a point of S. We have shown above that
compact implies sequentially compact; in the next lecture we shall prove the converse.
Thus in metric spaces compact and sequentially compact are equivalent conditions.
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