
Metric Spaces Lecture 25

Definition. A subset S of a metric space X is said to be sequentially compact if every
infinite sequence in S has a subsequence converging to a point of S.

In Lecture 24 we proved—or claimed to prove—that a compact subset of a metric
space is necessarily sequentially compact. Since there were some minor flaws in the proof
given there, we start this time by presenting a suitably modified version of this proof.
Proposition. Let C be a compact subset of a metric space (X, d). Every infinite sequence
(an)∞n=1 in C has a subsequence that converges to a point of C.
Proof. Let A = { an | n ∈ Z+ }, the set of points of C that occur as terms of the
sequence. The sequence is infinite, but it is possible that the set A is finite; if so, there
must be at least one a ∈ A such that an = a for infinitely many values of n. That is,
in this case there exists an infinite sequence of positive integers n1 < n2 < · · · such that
ani = a for all i. Clearly, the subsequence (ani)

∞
i=1 of (an) is then convergent, its limit

being a (which is an element of C).
We are left with the case that the set A is infinite. The proposition then guarantees

the existence of a point c ∈ C that is an accumulation point of A. Every open neighbour-
hood of c then contains a point of A different from c. Thus for every ε > 0 there exists
a positive integer n such that 0 < d(c, an) < ε. Let ε1 = 1, and choose n1 ∈ Z+ such
that 0 < d(an1 , c) < ε1. (Note that in Lecture 24 we simply chose n1 = 1. But it can
easily be seen that for the proof to work it is necessary that d(c, an1) > 0, and there is
no guarantee that a1 6= c.) Now define εi and ni recursively for each i > 1 as follows: let
εi = 1

2 min{ d(c, an) | 1 ≤ n ≤ ni−1 and an 6= c }, and choose ni so that 0 < d(c, ani
) < εi.

Since it is clear that εi > 0, such an ni must exist. Furthermore, since d(c, ani
) < d(c, an)

for all n ≤ ni−1 such that an 6= c, it follows that either ani = c or ni > ni−1. But
since also d(ani , c) > 0 we conclude that ni > ni−1. Thus (n1, n2, n3, . . . ) is an infinite
increasing sequence of positive integers, and so (ani

)∞i=1 is a subsequence of (an). (In
Lecture 24 we essentially defined εi = 1

2d(c, ani−1); the problem with this is that it does
not guarantee that ni > ni−1.)

A straightforward induction shows that d(c, ani
) < 2−(i−1)d(c, a1) for all i, and hence

d(c, ani) → 0 as i → ∞. That is, the subsequence (ani)
∞
i=1 of (an) converges to the

point c ∈ C. �
The above proposition has shown that, in metric spaces, compact implies sequentially

compact. We now set about proving the converse.
Let C be a sequentially compact set and let ε > 0. Obviously the collection of open

balls of radius ε and centre in C forms an open covering of C, since each point c is in the
open ball ball centered at that point. Our first lemma says that this open covering of C
has a finite subcovering.
Lemma 1. Suppose that C is a sequentially compact subset of the metric space X, and
let ε be any positive number. Then there exists a finite set of points x1, x2, . . . , xn of C
such that C ⊆

⋃n
i=1 B(xi, ε).

Proof. Suppose that no such set of points exists. We define an infinite sequence of points
xk ∈ C recursively as follows: for each k ∈ Z+, let xk be any point of C \

⋃k−1
i=1 B(xi, ε).

The set C \
⋃k−1

i=1 B(xi, ε) is guaranteed to be nonempty (for each k) by our assumption
that no finite set of points xi ∈ C exists with C ⊆

⋃n
i=1 B(xi, ε). Choosing the points in

this way ensures that for all k ∈ Z+ and all i ∈ {1, 2, . . . , k − 1}, the point xk is not in
B(xi, ε), and therefore d(xi, xk) ≥ ε.
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By the assumption that C is sequentially compact, the sequence (xk)∞k=1 in C has a
convergent subsequence. That is, there exists an infinite increasing sequence of positive
integers i1 < i2 < i3 · · · and a point x such that xir

→ x as r →∞. It follows that there
exists an integer N such that d(xir

, x) < ε/2 whenever r > N . Now let i = ir and k = is,
where r, s ∈ Z+ are chosen so that N < r < s. Then

d(xi, xk) ≤ d(xi, x) + d(x, xk) <
ε

2
+

ε

2
= ε,

contrary to the fact, explained above, that d(xi, xk) ≥ ε for all i, k ∈ Z+ with i < k. So
our assumption was false, and the lemma is proved. �

Definition. A set of points x1, x2, . . . , xn ∈ C with the property that the open balls
B(x1, ε), B(x2, ε), . . . , B(xn, ε) cover C is called an ε-net for C.

Lemma 1 has shown that a sequentially compact set has a ε-net, for every ε > 0.

Lemma 2. Let (Ui)i∈I be an open covering of a sequentially compact set C. Then there
exists an ε > 0 such that for every x ∈ C there is an i ∈ I for which B(x, ε) ⊆ Ui.

Proof. Suppose, for a contradiction, that for every ε > 0 there is an x ∈ C such that
B(x, ε) is not contained in any Ui. Then, in particular, for each k ∈ Z+ there exists an
xk ∈ C such that B(x, 1/k) is not contained in any Ui. Now because C is sequentially
compact there is an x ∈ C and an infinite increasing sequence of integers k1 < k2 < k3 · · ·
such that xkn

→ x as n →∞. Since the Ui’s cover C there is an i ∈ I such that x ∈ Ui,
and since Ui is open there exists a ε > 0 such that B(x, ε) ⊆ Ui.

Since 1/kn → 0 as n →∞ and d(xkn , x) → 0 as n →∞, there exists an n ∈ Z+ such
that 1/kn < ε/2 and d(xkn , x) < ε/2. Now, writing k = kn, for all y ∈ B(xk, 1/k) we
have

d(x, y) ≤ d(x, xk) + d(xk, y) <
ε

2
+

1
k

< ε,

and so y ∈ B(x, ε) ⊆ Ui. As this holds for all y ∈ B(xk, 1/k) it follows that B(xk, 1/k) is
contained in Ui. This contradicts the way the xk were chosen. �

We are now able to complete the proof of the folowing theorem.

Theorem. Let C be a sequentially compact metric space. Then C is compact.

Proof. Assume that C is sequentially compact, and let (Ui)i∈I be an arbitrary open
covering of C. Choose ε as guaranteed by Lemma 2: then for all x ∈ C there exists an
i ∈ I with B(x, ε) ⊆ Ui. By Lemma 1 there exist n ∈ Z+ and points x1, x2, . . . , xn ∈ C
forming an ε-net for C; thus we have

C ⊆ B(x1, ε) ∪B(x2, ε) ∪ · · · ∪B(xn, ε). (1)

By the choice of ε we know that for each k ∈ {1, 2, . . . , n} there is an ik ∈ I such that
B(xk, ε) ⊆ Uik

. By Eq. (1) it follows that

C ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uin .

So in the arbitrarily chosen open covering (Ui)i∈I we have found the finite subcovering
(Uik

)n
k=1. Hence C is compact. �
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To close, we prove a generalization, to the metric space context, of the result that
a continuous real-valued function on a closed and bounded interval in R is necessarily
uniformly continuous.†
Proposition. Let X and S be metric spaces, and suppose that X is compact. Then every
continuous function f :X → S is uniformly continuous.
Proof. Let ε > 0. For each x ∈ X there is a δx > 0 such that the following holds: for all
y ∈ X, if d(x, y) < δx then d(f(x), f(y)) < ε/2. Since each x ∈ X is an element of the
open ball B(x, δx/2), it follows that the family of open balls (B(x, δx/2))x∈X is an open
covering of X. Since X is compact, there is a finite subcovering, which we may write as
(B(x, δx/2))x∈Q, the set Q being a finite subset of X.

Put δ = minx∈Q(δx/2). Then δ > 0 (as the minimum of a finite set of positive
numbers is finite), and δ ≤ δx/2 for all x ∈ Q. Now let y, z ∈ X with d(y, z) < δ. Since
(B(x, δx/2))x∈Q is a covering of X, there exists an x ∈ Q such that y ∈ B(x, δx/2). Thus
d(y, x) < δx/2, and it follows that

d(z, x) ≤ d(z, y) + d(y, x) < δ +
δx

2
<

δx

2
+

δx

2
= δx.

So d(f(z), f(x)) < ε/2. Since also d(y, x) < δx/2 < δx we also have d(f(z), f(x)) < ε/2,
and therefore

d(f(y), f(z)) ≤ d(f(y), f(x)) + d(f(x), f(z)) < ε/2 + ε/2 = ε.

This holds whenever d(y, z) < δ, and since δ depends only on ε it follows that f is
uniformly continuous, as required. �

† This was not in fact done in the lecture; so its proof will not be considered as part
of the course for examination purposes. Nevertheless, the proof provides another good
example of a compactness argument.
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