
Metric Spaces Lecture 26

A comment on separation properties

Earlier in the course the following definitions were made:
(a) A topological space X is said to be T1 if the following condition holds: for all a, b ∈ X,

if a 6= b then there exists an open set U with a ∈ U and b /∈ U .
(b) A topological space X is said to be T2, or Hausdorff, if the following condition holds:

for all a, b ∈ X, if a 6= b then there exists an open set U with a ∈ U and an open set
V with b ∈ V , such that U ∩ V = ∅.

There is perhaps a possible source of confusion relating to T1, since the definition given
in Choo’s notes may at first sight seem to be different from the definition above, though
in fact the two are equivalent. Choo also gives the following definition: a space is said to
be T0 if for every pair of distinct points in the space there is an open set containing one
and not the other. To make it clear that this concept is different from T1, it is helpful
to rephrase the definition: a space X is T0 if for all x, y ∈ X with x 6= y, there either
exists an open set U containing x and not y or an open set V containing y and not x. If
the space is T1 and x, y are distinct points of X then, applying the definition above with
a = x and b = y, we see that there must exist an open set U containing x and not y;
moreover, applying the same condition with a = y and b = x we see that there must also
exist an open set V containing b and not a. Choo chose to emphasize this by stating the
definition of T1 as follows: X is called a T1-space if for every pair a, b of distinct points
of X there are open sets U and V in X such that a ∈ U but b /∈ U and b ∈ V but a /∈ V .
The comments above show that this stronger seeming requirement is actually no stronger
than the definition I gave. Mine implies his, and his obviously implies mine.

Choo chose to reword the definition of T1 to emphasize its difference from T0. How-
ever, the definition as I have given it above is simpler and clearer; it was the definition
of T0 that really needed clarification.

Before leaving this, it is as well to recall that T1 could be defined as follows: X is T1

if, for all x ∈ X, the set {x} is closed. Proving the equivalence of this definition with the
one above is an easy exercise, which the reader should now do mentally. (The proof can
be found in an earlier lecture if need be.)

For interest only

To end these lectures I would like to mention an interesting construction known as
the “one point compactification” of a topological space X. The idea is this. Given a
topological space X we wish to construct another space X ′, containing X as a subspace,
and such that X ′ is compact. Furthermore, X ′ should contain just one point that is not
in X.

Let T = {U ⊆ X | U is open }, the given topology on the set X. We need to add an
extra point to X; let us call this new point ∞. Now define T ′ to be the set of all subsets
V of X ′ such that either
(1) V ⊆ X and V ∈ T , or
(2) V = {∞} ∪ (X \ C) for some C ⊆ X such that C is compact and closed relative to

the topology T .
The proof that T ′ is a topology on X ′ makes use of some of the elementary properties of
compact sets that were discussed in Tutorial 10. It is slightly easier in this case to work
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with closed sets rather than open sets; so let us define S = {F ⊆ X | X \ F ∈ T }, the
closed sets of the given topology on X, and let S ′ = S ′

1 ∪ S ′
2, where

(1′) S ′
1 = { {∞} ∪ F | F ∈ S }, and

(2′) S ′
2 = {C ⊆ X | C is compact and closed relative to the topology T }.

We need to check that ∅, X ′ ∈ S ′, the union of two elements of S ′ is in S ′, and the
intersection of an arbitrary collection of elements of S ′ is in S ′. It is immediately apparent
that X ′ ∈ S ′

1, since X ∈ S, and ∅ ∈ S ′
2 since it is straightforward to show that the empty

set is compact (and closed) in any topology.
Since the union of two elements of S is always an element of S, the union of two

elements of S ′
1 is in S ′

1, and the union of an element of S ′
1 with one of S ′

2 gives an element
of S ′

1. Furthermore, as shown in Exercise 2 of Tutorial 10, the union of two compact sets
is always compact; so the union of two elements of S ′

2 gives an element of S ′
2. Hence S ′

is closed under unions of pairs of elements (and hence under finite unions).
Now consider the intersection of an arbitrary family (Gi)i∈I of elements of S ′. If

every Gi in this family is in S ′
1, then we can write Gi = {∞} ∪ Fi, where (Fi)i∈I is a

family of elements of S. In this case we find that
⋂

i∈I Gi = {∞} ∪
⋂

i∈I Fi, which is in
S ′

1 since S is closed under arbitrary intersections. If one or more of the Gi’s is in S ′
2 then

∞ /∈
⋂

i∈I Gi, and so
⋂

i∈I Gi =
⋂

i∈I Fi, where Fi = X ∩ Gi is a closed subset of X for
each i, and at least one Fi is compact. Since S is closed under arbitrary intersections,
we know that

⋂
i∈I Fi is closed. If we choose i0 such that Fi0 is compact, then we see

that
⋂

i∈I Fi = Fi0 ∩
⋂

i∈I Fi is the intersection of a compact set and a closed set, hence
is compact by Exercise 4 of Tutorial 10. So in this case

⋂
i∈I Gi is in S ′

2, and hence S ′ is
closed under arbitrary intersections.

We have now shown that T ′ is a topology on X ′. It is clear that the intersection of
an element of T ′ with X always gives an element of T , and, furthermore, every element
of T arises in this way since T ⊆ T ′. So the topology on X induced by the topology T ′

on X ′ coincides with the original topology T . So the one remaining thing to be proved is
that X ′ is compact with respect to the topology T ′.

Let (Vi)i∈I be a family of open subsets of X ′ whose union is X ′. At least one of the
sets Vi must contain the point ∞; so there exists j ∈ I such that

Vj = {∞} ∪ (X \ C),

where C is a compact subset of X. Now we have that

C = X ∩ C ⊆ X ∩
⋃
i∈I

Vi =
⋃
i∈I

(X ∩ Vi),

and since X ∩Vi ∈ T for each i we see that (X ∩Vi)i∈I is an open covering of the compact
subset C of X. Hence there exists a finite subset I0 ⊆ I such that C ⊆

⋃
i∈I0

(X ∩ Vi).
Now J = j ∪ I0 is a finite subset of I, and we find that (Vi)i∈J is a finite subcovering of
the original open covering of X ′, since

X ′ = Vj ∪ C ⊆ Vj ∪
⋃
i∈I0

(X ∩ Vi) ⊆ Vj ∪
⋃
i∈I0

Vi =
⋃
i∈J

Vi.

So we have shown, as required, that an arbitrary open covering of X ′ always has a finite
subcovering. That is, X ′ is compact.
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Note that a special case of this construction appeared in one of the questions of the
1999 exam. There the space X was taken to be the positive integers, with the discrete
topology, and the point in X ′ and not in X was called 0 rather than ∞. Recall that in the
discrete topology all subsets are open. It is easy to show that under these circumstances
a subset is compact if and only if it is finite. So the upshot of this is that the topology on
X ′ consisted of all subsets that do not contain 0 together with the cofinite sets that do
contain 0. The exam question asked candidates to prove that this is indeed a topology,
and that the space is compact. Of course, the necessary proofs are essentially the same
as those given above, although they simplify somewhat in this special case.

THE END
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