Group representation theory

Before moving on to more theory, let us calculate some examples. Unfortunately, verifying elegant theoretical results in practice often involves long calculations.

Let us start with a degree 1 representation of the group of symmetries of a square. Labelling the vertices of the square $1,2,3$ and 4 (cyclically), and identifying its symmetries with pemutations of the vertices, we can easily write down the eight symmetries. The rotation symmetries are the powers of the 4-cycle (1234), and multiplying these four elements by (13) gives the four reflection symmetries. Since we know that the product of two reflections is a rotation, and the product of two rotations is a rotation, while the product of a reflection and a rotation is a reflection, it follows that there is a representation of the group which maps the reflections to -1 and the rotations to +1 .

So we have eight permutations which form a subgroup D of $G=S_{4}$, the group of all permutations of $\{1,2,3,4\}$, and we have a representation $\rho: D \rightarrow \operatorname{GL}(1, \mathbb{C})$. We should be able to form an induced representation. For this we first need a system of coset representatives. Now $[G: D]=24 / 8=3$; so we need three coset representatives. An easy way to find three suitable permutations is to find a subgroup X of G with three elements. The subgroup $H \cap X$ must then be trivial (since its order must divide both 3 and 8), and so if x, y are distinct elements of X then the cosets $x H$ and $y H$ are distinct (since $\left.x^{-1} y \notin H\right)$. So we can take $x_{1}=\mathrm{id}, x_{2}=(123)$ and $x_{3}=(132)$ as the coset representatives.

Now let us calculate the matrices which will represent some randomly chosen elements of S_{4} in the induced representation ρ^{G}. Consider $g=(143)$, for example. The cosets $g x_{1} H$, $g x_{2} H, g x_{3} H$ must equal $x_{1} H, x_{2} H, x_{3} H$ in some order. Now we have to calculate. First, $x_{2}^{-1} g x_{1}=(132)(143)=(142) \notin D$. Also $x_{1}^{-1} g x_{1}=g \notin D$. So it must be that $x_{3}^{-1} g x_{1} \in H$, and indeed calculation yields $x_{3}^{-1} g x_{1}=(14)(23)$, which is the reflection in the perpendicular bisector of the sides $1-4$ and $2-3$ of the square. So $\rho\left(x_{3}^{-1} g x_{1}\right)=-1$, and this is the $(3,1)$ entry of the matrix $\rho^{G}(g)$. The $(2,1)$ and $(1,1)$ entries are 0 . Moving on to the second column, we know that the $(3,2)$ entry must be zero, since the $(3,1)$ entry is nonzero, and since $x_{2}^{-1} g x_{2}$ is a 3 -cycle (and hence not in H) we conclude that the $(1,2)$ entry must be nonzero. We readily find that $x_{1}^{-1} g x_{2}=(143)(123)=(12)(34)$, another reflection. And finally the nonzero entry in the 3rd column must be in the 2nd row (since the other two rows are taken), and the entry must be $\rho((132)(143)(132))=\rho((13)(24))=1$ (since $(13)(24)$ is a rotation). So we obtain the matrix

$$
\rho^{G}((143))=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right) .
$$

Let us next calculate $\rho^{G}((12))$. We find that $x_{2}^{-1}(12) x_{2}=(13)$ (one of the reflections in D), $x_{1}^{-1}(12) x_{3}=(13)$ and $x_{3}^{-1}(12) x_{1}=(13)$. So

$$
\rho^{G}\left((12)=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)\right.
$$

The logical thing to do next is to check that $\rho^{G}\left((12) \rho^{G}((143))=\rho^{G}((12)(143)\right.$. By what we have done so far the left hand side is

$$
\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

So as $(12)(143)=(1432)$ we only have to check that

$$
\rho^{G}((1432))=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) .
$$

Now $\rho\left(x_{1}^{-1}(1432) x_{1}\right)=\rho((1432))=1$, which confirms that the $(1,1)$ entry is correct. Similarly $\rho\left(x_{3}^{-1}(1432) x_{2}\right)=\rho(1234)=1$ and $\rho\left(x_{2}^{-1}(1432) x_{3}\right)=\rho((24)(13))=-1$, which also check.

If we had started with a representation of D of degree 2 , or more, the calculations would have been very similar; the main difference would just be the size of the resulting matrices. For example, there is a representation $\sigma: D \rightarrow \mathrm{GL}(2, \mathbb{C})$ defined by

$$
\sigma((1234))=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \sigma((12)(34))=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),
$$

and if we use the same coset representatives as above to compute σ^{G} we find that

$$
\sigma^{G}((143))=\left(\begin{array}{ccc}
& & \\
0 & \sigma((12)(34)) & 0 \\
0 & 0 & \sigma((13)(24)) \\
\sigma((14)(23)) & 0 & 0
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

as $\sigma((13)(24))=\sigma((1234))^{2}=-I$ and $\sigma((14)(23))=\sigma((13)(24)) \sigma((12)(34))=-\sigma((12)(34))$.
Returning to our first example, let us now calculate the character of ρ^{G}. Recall that $G=S_{4}$ has five conjugacy classes \mathcal{C}_{i} corresponding to the five possible cycle types for permutations of $\{1,2,3,4\}$. As representatives of these classes we can take the following elements g_{i} :

$$
g_{1}=\mathrm{id}, \quad g_{2}=(12), \quad g_{3}=(123), \quad g_{4}=(1234) \quad \text { and } \quad g_{5}=(12)(34) .
$$

If h_{i} is the number of elements in the class \mathcal{C}_{i}, it is easy shown that

$$
h_{1}=1, \quad h_{2}=6, \quad h_{3}=8, \quad h_{4}=6 \quad \text { and } \quad h_{5}=3 .
$$

In order to calculate the induced character using the formula from the end of Lecture 14 we need to also know the conjugacy classes \mathcal{D}_{j} of \mathcal{D} and all the containment relations $\mathcal{D}_{j} \subseteq \mathcal{C}_{i}$. Now in fact there are five \mathcal{D}_{j} 's. Two of these have one element each: $\mathcal{D}_{1}=\{\mathrm{id}\}$ and $\mathcal{D}_{2}=\{(13)(24)\}$. (Observe that (13)(24) is the half-turn, corresponding to the linear transformation which is -1 times the identity.) The other three classes have two elements each: firstly, $\mathcal{D}_{3}=\{(1234),(1432)\}$ (the remaining two rotations); next, $\mathcal{D}_{4}=\{(13),(24)\}$ (the reflections in the two diagonals of the square); finally $\mathcal{D}_{5}=\{(12)(34),(14)(23)\}$ (the reflections in perpendicular bisectors of the sides). The character χ of ρ takes the value +1 on elements of classes $\mathcal{D}_{1}, \mathcal{D}_{2}$ and \mathcal{D}_{3}, and -1 on elements of \mathcal{D}_{4} and \mathcal{D}_{5}. (Of course in this case the character χ is just the same as the representation ρ, since the degree of the representation is 1 .)

By the formula from the end of Lecture 14, the value the induced character χ^{G} takes at an element $g \in G$ is given by

$$
\begin{equation*}
\chi^{G}(g)=\frac{|G|}{|H|} \sum_{j} \frac{q_{j}}{h} \chi\left(l_{j}\right)=3 \sum_{j} \frac{q_{j}}{h} \chi\left(l_{j}\right) \tag{1}
\end{equation*}
$$

where h is the size of the conjugacy class of G containing g, the l_{j} are representatives of the conjugacy classes of D that are contained in the G-conjugacy class of g and the q_{j} are the sizes of these classes. Now the class \mathcal{C}_{3} of G does not contain any elements of D; so the sum in Eq. (1) is empty if $g \in \mathcal{C}_{3}$, and thus $\chi^{G}(g)=0$ in this case. Classes $\mathcal{C}_{1}, \mathcal{C}_{2}$ and \mathcal{C}_{4} of G each contain only one conjugacy class of D. So

$$
\begin{aligned}
& \chi^{G}\left(g_{1}\right)=3 \frac{1}{1} \chi(1)=3 \\
& \chi^{G}\left(g_{2}\right)=3 \frac{2}{6} \chi((12))=-1 \\
& \chi^{G}\left(g_{4}\right)=3 \frac{2}{6} \chi((1234))=1
\end{aligned}
$$

It remains to calculate $\chi^{G}\left(g_{5}\right)$. In this case the conjugacy class of G (namely \mathcal{C}_{5}) contains two conjugacy classes of D (namely \mathcal{D}_{2} and \mathcal{D}_{5}). So the formula yields

$$
\chi^{G}\left(g_{5}\right)=3\left(\frac{1}{3} \chi((13)(24))+\frac{2}{3} \chi((12)(34))\right)=3\left(\frac{1}{3}-\frac{2}{3}\right)=-1
$$

Although the character of D that we started with is obviously irreducible, having degree 1 , the induced character χ^{G} does not have to be. We can determine how close it is to being irreducible by calculating its inner product with itself. We find

$$
\begin{aligned}
\left(\chi^{G}, \chi^{G}\right) & =\frac{1}{24} \sum_{g \in G}\left|\chi^{G}(g)\right|^{2} \\
& =\frac{1}{24} \sum_{i=1}^{5} h_{i}\left|\chi^{G}\left(g_{i}\right)\right|^{2} \\
& =\frac{1}{24}(1 \times 9+6 \times 1+0+6 \times 1+3 \times 1) \\
& =1
\end{aligned}
$$

Thus χ^{G} is in fact irreducible after all.
Let us also calculate the character of the induced representation σ^{G} mentioned above. Writing ψ for the character of σ, the following table gives the character values on elements from the various classes of D.

$$
\begin{array}{r|lllll}
\text { classes } & \mathcal{D}_{1} & \mathcal{D}_{2} & \mathcal{D}_{3} & \mathcal{D}_{4} & \mathcal{D}_{5} \\
\hline \psi(x) & 2 & -2 & 0 & 0 & 0
\end{array}
$$

As for χ^{G}, it is immediate that $\psi^{G}\left(g_{3}\right)=0$. Also as for χ^{G} the value that ψ^{G} takes on g_{1}, g_{2} and g_{4} is found by multiplying $\psi\left(g_{1}\right), \psi\left(g_{2}\right)$ and $\psi\left(g_{4}\right)$ by the appropriate ratios, which are respectively 3,1 and 1 . And finally

$$
\psi^{G}\left(g_{5}\right)=3\left(\frac{1}{3} \psi\left((13)(24)+\frac{2}{3} \psi((12)(34))\right)=-2\right.
$$

So the values of the induced character are as follows

$$
\begin{array}{c|ccccc}
\text { classes } & \mathcal{C}_{1} & \mathcal{C}_{2} & \mathcal{C}_{3} & \mathcal{C}_{4} & \mathcal{C}_{5} \\
\hline \psi^{G}(g) & 6 & 0 & 0 & 0 & -2
\end{array}
$$

We readily find that $\left(\psi^{G}, \psi^{G}\right)=\frac{1}{24}(36+3 \times 4)=2$, and from this it follows that ψ^{G} must be a sum of two irreducible characters of G. We can also check that $\left(\psi^{G}, \chi^{G}\right)=1$, so that χ^{G} is in fact one of the irreducible constituents of ψ^{G}. The difference $\psi^{G}-\chi^{G}$ must therefore be another irreducible character of G.

