
Group representation theory Lecture 16, 17/9/97

Definition. Let F be a field. An F -algebra is a vector space A over F equipped with an operation
A× A→ A which is bilinear. In other words, for a vector space A to be an F -algebra there must
be a vector multiplication operation (v, w)→ vw (defined for all v, w ∈ A) such that

(λv + µw)u = λ(vu) + µ(wu)
and

u(λv + µw) = λ(uv) + µ(uw)

for all u, v, w ∈ A and λ, µ ∈ F .

For example, R3 with the usual vector product (cross product) is an R-algebra. Note that this
algebra is not associative: it is not true that (u × v) × w = u × (v × w) for all u, v and w in R3.
In fact this algebra is an example of what are known as Lie algebras, which are the second most
important kind of algebras. The most important kind, and the only kind that we will be concerned
with in this course, are associative algebras: those algebras A satisfying (uv)w = u(vw) for all
u, v, w ∈ A. The best example of an associative F -algebra is Matn(F ), the set of all n×n matrices
over F . It is well known that this is an n2 dimensional vector space over F , and that matrix
multiplication (defined in the usual way) is bilinear and associative. Another example is P(F ), the
set of all polynomials over F . This is an infinite dimensional vector space, and multiplication of
polynomials, defined in the usual manner, is a bilinear associative operation. Unlike the algebra of
n × n matrices over F , the algebra of polynomials over F is commutative: it satisfies pq = qp for
all p, q ∈ P(F ).

Suppose that A is an F -algebra which is finite-dimensional as a vector space over F . Let
v1, v2, . . . , vn be a vector space basis for A. Then there exist scalars αijk ∈ F such that

vivj =
n∑
k=1

αijkvk for all i, j ∈ {1, 2, . . . , n}.

These scalars αijk are called the structure constants of A for the given basis. Note that the structure
constants determine the multiplication completely, since if u, v ∈ A are arbitrary then there exist
scalars λi, µj with u =

∑
i λivi and v =

∑
j µjvj , and this gives

uv =
(∑

i

λivi

)(∑
j

µjvj

)
=
∑
i,j

λiµj

(∑
k

αijkvk

)
=
∑
k

(∑
i,j

λiµjαijk

)
vk. (1)

Conversely, given a vector space A with basis v1, v2, . . . , vn, if we choose scalars αijk arbitrarily
and use Eq. (1) to define a multiplication operation on A, then the resulting operation is associative,
and hence gives A the structure of an F -algebra.

Examples

(i) A 2-dimensional vector space over R with basis v1 v2 can be given an R-algebra structure by
defining v1vj = vjv1 = vj (for both values of j) and v2

2 = −v1. The resulting algebra is easily
seen to be isomorphic to C via λv1 + µv2 7→ λ+ iµ.

(ii) The is a 4-dimensional associative R-algebra with basis 1, i, j, k and multiplication defined by

ij = k, jk = i, ki = j, ji = −k, ik = −j, kj = −i,
1i = i1 = i, 1j = j1 = j, 1k = k1 = k, i2 = j2 = k2 = −1.
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This algebra is known as the algebra of quaternions over R. The elements ±1, ±i, ±j, ±k
of the quaternion algebra form a group called the quaternion group of order 8 (obtained in a
different guise in Lectures 2 and 3).

(iii) If we let Xij be the n × n matrix whose (r, s)-entry is δirδjs then the n2 matrices Xij for
i, j ∈ {1, 2, . . . , n} form a basis for the algebra of all n× n matrices. The structure constants
for this basis are all either 0 or 1. Specifically, XijXkl = δjkXil.

If A, B are F -algebras then their direct sum is

A⊕B = { (a, b) | a ∈ A, b ∈ B }

made into a vector space in the usual way, with multiplication given by

(a, b)(a′, b′) = (aa′, bb′) for all a, a′ ∈ A and b, b′ ∈ B.

Note that if a1, a2, . . . , an form a basis for A and b1, b2, . . . , bm a basis for B then A ⊕ B has a
basis

(a1, 0), (a2, 0), . . . , (an, 0), (0, b1), (0, b2), . . . , (0, bm);

furthermore, the first n of these span a subalgebra A′ of A ⊕ B which is isomorphic to A, the
remaining m basis vectors span a subalgebra B′ of A⊕B isomorphic to B, and A′ and B′ annihilate
each other (meaning ab = 0 whenever a ∈ A′ and b ∈ B′.)

If A is an F -algebra then an identity element for A is an element 1 ∈ A such that 1a = a1 = a
for all a ∈ A. Henceforth in this course we shall use the term “F -algebra” as an abbreviation for
“associative F -algebra with an identity element”.

Definition. Let G be a finite group an F a field. The group algebra FG is an F -algebra having
the elements of G as a basis, the multiplication of basis elements coinciding with multiplication in
the group G.

The elements of FG are formal linear combinations of elements of G: expressions of the
form

∑
g∈G λgg. What this really means is that we choose some vector space over F whose di-

mension is |G|—the space of all |G|-component column vectors would do—and fix a basis of this
space. Then choose (arbitrarily) a one to one correspondence between these basis elements and
elements of G, and use this to identify the elements of G with the basis vectors. Multiplication in
G then determines a natural way to define multiplication of the basis elements, and, as we have
seen, bilinearity then determines multiplication uniquely for arbitrary elements of the space.

Examples

(i) Let G = {1, x} be the group of order 2. The real group algebra RG is {λ1 + µx | λ, µ ∈ R },
with multiplication given by

(λ1 + µx)(λ′1 + µ′x) = (λλ′ + µµ′)1 + (λµ′ + µλ′)x.

Now choose new basis for RG consisting of the two elements e = 1
2 (1 + x) and f = 1

2 (1 − x).
It is easily seen that e and f are idempotent elements: e2 = e and f2 = f . Furthermore,
ef = fe = 0. Thus it follows that for all λ, λ′, µ, µ′ ∈ R

(λe+ µf)(λ′e+ µ′f) = (λλ′)e+ (µµ′)f,
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and hence RG is isomorphic to R⊕ R via the one to one correspondence λe+ µf ↔ (λ, µ).
(ii) Let G be the Klein 4-goup, with elements 1, a, b and c (where a, b and c all have order 2 and

ab = c). The real group algebra RG consists of all linear combinations λ1+µa+νb+ξc, where
λ, µ, ν, ξ ∈ R. It can be checked that the four elements of the form 1

4 (1 ± a ± b ± c) where
the product of the signs is +1 are all idempotents and annihilate one another. Moreover, they
form a basis for RG. In this way it can be shown that RG is isomorphic to the direct sum of
four copies of R.

(iii) The complex group algebra of S3 is the six dimensional complex vector space

{α id + β(1 2) + γ(1 3) + δ(2 3) + ε(1 2 3) + ζ(1 3 2) | α, β, γ, δ, ε, ζ ∈ C }

with multiplication determined by the rule for multiplying permutations. It can be shown that
this algebra is isomorphic to the sum of two copies of C and one copy of Mat2(C).

Definition. Let A be an F -algebra. A matrix representation of A of degree d is a function
φ:A→ Matd(F ) satisfying φ1 = I and

φ(a+ b) = φa+ φb

φ(ab) = (φa)(φb)
φ(λa) = λ(φa)

for all a, b ∈ A and λ ∈ F .

The connection all this has with the representation theory of groups is provided by the following
easy proposition.

Proposition. If φ:FG → Matd(F ) is a representation of a group algebra FG then the restric-
tion of φ to the basis G of FG gives a matrix representation of the group G. Conversely, if
ψ:G → GL(d, F ) is a matrix representation of G then we can obtain a matrix representation of
FG by extending the domain of definition of ψ to the whole of FG by the formula

ψ(
∑
g∈G

λgg) =
∑
g∈G

λg(ψg).

Thus, representations of G are essentially the same as representations of FG.
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