
Group representation theory Lecture 18, 8/10/97

Modules and representations of algebras

Definition. Let F be a field and A an F -algebra. A left F -module is a vector space M over the
field F together with a function (a,m) 7→ am from A ×M to M which is bilinear and satisfies
(ab)m = a(bm) for all a, b ∈ A and m ∈ M . The module M is said to be unital if in addition
1m = m for all m ∈M , where 1 is the identity element of A.

Right modules are defined analogously, the function A×M →M being replaced by a function
M × A→M . We shall adopt the convention (which is universal) that all A-modules are assumed
to be unital unless it is explicitly stated otherwise.

The connection between modules and representations works for in the same way for algebras
as it does for groups. We have already defined a matrix representation of an F -algebra A to be a
linear map A→ Matd(F ) (for some d) which preserves multiplication and takes the identity element
of A to the identity matrix. In other words, a representation of A is an algebra homomorphism
φ:A → Matd(F ) such that φ1 = I. In view of the relationship between matrices and linear
transformations the following is virtually a reformulation of this definition.

Definition. A representation of an F -algebra A is a homomorphism φ from A to the algebra of
all linear transformations V → V , where V is a vector space over F , such that φ1 = id.

We neglected to define the concept of a homomorphism of F -algebras, but the definition
is obvious: an F -algebra homomorphism is a map from one F -algebra to another which preserves
addition, multiplication and scalar multiplication. It is clear that the set of all linear transformations
on a vector space V is an algebra if addition, multiplication and scalar multiplication of linear maps
are defined in the usual way (so that multiplication of linear maps is composition). This algebra
is usually denoted by EndF (V ), since linear maps V → V are also called F -endomorphisms of V .
The student is invited to write out for her/himself a proof of the following proposition, imitating
the proof for groups given in Lecture 3.

Proposition. Suppose that A is an F -algebra. If V is an A-module, and for each a ∈ A we
define φa:V → V by (φa)v = av for all v ∈ V , then φa ∈ EndF (V ); furthermore, the map
φ:A → EndF (V ), given by a 7→ φa for all a ∈ A, is a representation of A. Conversely, given
a representation φ:A → EndF (V ), the vector space V becomes an A-module if the required map
A× V → V is defined by the rule that av = (φa)v for all a ∈ A and v ∈ V .

Thus if G is a group then an FG-module gives rise to a representation of the group algebra FG,
and hence gives rise to a representation of G, in view of the correspondence between representations
of G and representations of FG that we described in Lecture 16. So we have another item to add to
the already long list of concepts that are more or less equivalent to the concept of a representation
of a group!

Definition. Let A be an F -algebra. The left regular A-module is the vector space A made into
an A-module via the map A×A→ A given by (a, b) 7→ ab.

Note that this definition is in agreement with the definition, given in Lecture 9, of the regular
representation of a group. The left multiplication action of G on itself can be regarded as a
permutation representation of G, which in turn yields a linear representation of G on a vector
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space which has the elements of G as a basis. Since the group algebra FG is such a vector space,
this amounts to saying that FG is a G-module, the action of G on FG being given by

x
(∑
g∈G

λgg
)

=
∑
g∈G

λgxg (1)

for all x ∈ G and scalars λg ∈ F . In accordance with the theorem from Lecture 16 and the
discussion above, a G module is the same thing as an FG-module, and by Eq. (1) we see that in
this case the map FG× FG→ FG that makes FG into an FG-module is given by

(
∑
x∈G

µxx,
∑
g∈G

λgg) 7→
∑
x∈G

µx

(∑
g∈G

λgxg
)

=
(∑
x∈G

µxx
)(∑

g∈G
λgg
)
.

In other words, this is the left regular FG-module.

Definition. Let A be an F -algebra. A left ideal in A is a submodule of the left regular module.
In other words, a left ideal is a nonempty subset I of A such that
(i) x+ y ∈ I whenever x, y ∈ I,
(ii) λx ∈ I whenever x ∈ I and λ ∈ F , and
(iii) ax ∈ I whenever a ∈ A and x ∈ I.
A left ideal I is minimal if I 6= {0} and there are no nonzero left ideals J with J ( I. That is, the
left ideal I is minimal if and only if it is an irreducible left A-module.

By Maschke’s Theorem, if G is a finite group then the left regular module CG can be decom-
posed as a direct sum of minimal left ideals. To attempt to find explicitly such a direct decomposi-
tion is one possible approach to the problem of describing the irreducible representations of a finite
group. We have already seen how knowledge of a full set of irreducible complex representations
of G enables one to write CG explicitly as a direct sum of complete matrix algebras, and it is a
small step from this to decompose CG explicitly into minimal left ideals. We shall not go into the
details of this, since it is fairly straightforward, and of much less importance than the question of
how to find irreducible representations. So we simply state the following result without proof, and
leave it to the reader to pursue the matter or not as (s)he chooses.

Proposition. The space F d of d-component column vectors over the field F is an irreducible left
module for the complete matrix algebra Matd(F ), the map Matd(F ) × F d → F d being the usual
multiplication of matrices and column vectors. Furthermore, the left regular module for Matd(F )
can be expressed as the direct sum of d minimal left ideals C1, C2, . . . , Cd which are all isomorphic
to F d. Specifically, we may take Cj to consist of those matrices whose entries in columns other
than the jth column are all zero.

A finite-dimensional F -algebra is said to be semisimple if the left regular module can be
expressed as a direct sum of irreducible modules. The above proposition thus says that complete
matrix algebras are semisimple, and it follows easily that any algebra which is a direct sum of
complete matrix algebras must also be semisimple. It turns out that the converse of this is also
true: a finite-dimensional algebra is which is semisimple is necessarily isomorphic to a direct sum
of complete matrix algebras. We omit the proof of this.

If A is an F -algebra and b ∈ A an arbitrary element then the set Ab = { ab | a ∈ A } is a left
ideal. It is obvious that Ab 6= ∅ (since 0b ∈ Ab). Closure under addition and scalar multiplication
is also clear: if x, x′ ∈ Ab and λ ∈ F then there exist a, a′ ∈ A with x = ab and x′ = a′b, and this
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yields x+ x′ = (a+ a′)b ∈ Ab and λx = (λa)b ∈ Ab. Similarly, if x = ab ∈ Ab then for all t ∈ A we
have tx = (ta)b ∈ Ab, showing that Ab is also closed under left multiplication by elements of A.

For example, suppose that A = Matd(F ) and b ∈ A is the matrix whose entries are all zero
apart from the kth diagonal entry, which is 1. That is, the (i, j)-entry of b is δikδjk. Then if a ∈ A
is arbitrary, the (i, j)-entry of ab is

∑d
l=1 ailδlkδjk = aijδjk, which shows that ab has zero entries

in all columns but the kth column, while the kth column of ab is the same as the kth column of a.
So the left ideal Ab consists of all matrices which are zero in all columns but the kth. So Ab is
the left ideal Ck of the proposition above. Note also that the element b is idempotent: b2 = b.
As we shall see, idempotent elements are of fundamental importance in representation theory. In
particular, by investigating left ideals generated by idempotent elements in the group algebra of
the symmetric group Sn, we shall (in the course of the next few lectures) describe a full set of
irreducible CSn-modules.

Definition. Nonzero elements e1, e2, . . . , ek in an F -algebra A form a set of orthogonal idempo-
tents if e2

i = ei for all i ∈ {1, 2, . . . , k} and eiej = 0 for all i, j ∈ {1, 2, . . . , k} with i 6= j.

Definition. An idempotent e in an F -algebra A is said to be primitive if it is not possible to
find two orthogonal idempotents e1, e2 with e1 + e2 = e.

The importance of primitive idempotents derives from the following proposition.

Proposition. Let A be an F -algebra and e ∈ A an idempotent element. Then e is primitive if
and only if the left ideal Ae is indecomposable.

Proof. Suppose first that e is not primitive; we shall show that Ae is decomposable. By our
assumption there exist idempotents e1, e2 with e = e1 + e2 and e1e2 = 0.† Now

e1 = e1 + 0 = e2
1 + e1e2 = e1(e1 + e2) = e1e,

and it follows that Ae1 = Ae1e ⊆ Ae. Furthermore, we also have

e2 = e− e1 = e2 − e1e = (e− e1)e = e2e,

whence Ae2 = Ae2e ⊆ Ae. So Ae1 +Ae2 ⊆ Ae. On the other hand, if a ∈ A then

ae = a(e1 + e2) = ae1 + ae2 ∈ Ae1 +Ae2,

and so Ae ⊆ Ae1 +Ae2.
We have shown that Ae = Ae1 + Ae2, and since ei ∈ Aei both summands are nonzero. If

we can show that Ae1 ∩ Ae2 = {0} then it will follow that Ae = Ae1 ⊕ Ae2, and hence that
Ae is decomposable. But if x ∈ Ae1 then we have x = ae1 for some a ∈ A, and therefore
x = ae1 = ae2

1 = (ae1)e1 = xe1. So if x ∈ Ae1 ∩ Ae2 then x = xe1 and x = xe2. But substi-
tuting x = xe1 into the right hand side of x = xe2 gives x = (xe1)e2 = x(e1e2) = x0 = 0. So
Ae1 ∩Ae2 = {0}, as required.

Conversely, suppose that Ae is decomposable. Then Ae = I1 ⊕ I2 for some nonzero A-
submodules I1, I2 of Ae. Now e ∈ Ae and so there exist unique x ∈ I1 and y ∈ I2 with e = x+ y.
If x = 0 then e = y ∈ I2, which implies that Ae = Ay ⊆ I2 (since I2 is a left ideal), whence

† The assumptions that e1, e2 and e = e1 + e2 are all idempotents and e1e2 = 0 imply that
e2e1 = 0, as can be seen by expanding (e1 + e2)2
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I1 ⊕ I2 ⊆ I2, contradicting the assumption that I1 6= {0}. Similarly y 6= 0. Now since x ∈ Ae we
have x = xe, and thus

(1− x)x = x− x2 = xe− x2 = x(x+ y)− x2 = xy.

But xy ∈ I2 since y ∈ I2, and (1− x)x ∈ I1 since x ∈ I1, and since I1 ∩ I2 = {0} we conclude that
x − x2 = xy = 0. So x = x2 and xy = 0. Exactly similar reasoning with x and y interchanged
gives y2 = y and yx = 0. So x and y are orthogonal idempotents whose sum is e; so e is not
primitive. �

The following lemma is a useful for finding idempotents in group algebras.

Lemma. Suppose that H is a subgroup of the finite group G, and λ:H → C
× a representation of

H of degree 1. Then e = 1
|H|
∑
x∈H λ(x−1)x is an idempotent in CG. If H = G then e is primitive.

Proof. If h ∈ H is fixed, then y = hx runs through all elements of H as x does. So

he =
h

|H|
∑
x∈H

λ(x−1)x =
1
|H|

∑
x∈H

λ((hx)−1h)hx

=
1
|H|

∑
y∈H

λ(y−1h)y =
1
|H|

∑
y∈H

λ(y−1)λ(h)y = λ(h)e.

It follows that

e2 =
1
|H|

∑
h∈H

λ(h−1)he =
1
|H|

∑
h∈H

λ(h−1)λ(h)e =
1
|H|

∑
h∈H

λ(h−1h)e =
1
|H|

∑
h∈H

e =
|H|
|H|

e = e.

Thus e is idempotent.
In the case H = G the above calculations show that ge = λ(g)e for all g ∈ G, and so(∑
g∈G αgg

)
e =

(∑
g∈G αgλ(g)

)
e for all choices of scalars αg. So every element of CGe is a scalar

multiple of e. Thus the left ideal CGe is a one-dimensional vector space over C, and as {0} is
the only proper subspace of a one-dimensional space it follows that CGe cannot be nontrivially
expressed as a direct sum. So CGe is indecomposable, and by the proposition above it follows that
e is primitive. �

Note that if B is a subalgebra of A then an idempotent e ∈ B which is primitive as an
idempotent of the algebra B need not be primitive as an idempotent of A. For example, ifG = {1, x}
is a cyclic group of order 2 and H = {1} the subgroup of G of order 1, then the group algebra CH
is a subalgebra of the group algebra CG, and the element 1 ∈ CH is a primitive idempotent of CH.
But it is not primitive as an idempotent of CG, since it is the sum of the orthogonal idepotents
e1 = (1/2)(1 + x) and e2 = (1/2)(1 − x). The left ideal of CH generated by the idempotent 1 is
CH1 = CH, which is 1-dimensional, but the ideal of CG generated by 1 is CG1 = CG, which is
two-dimensional, and the direct sum of the one-dimensional left ideals CGe1 and CGe2.
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