
Group representation theory Lecture 19, 13/10/97

Proposition. Let H, K be subgroups of the finite group G, and let λ:H → C
× and µ:K → C

×

representations of degree 1. Let e = (1/|H|)
∑
h∈H λ(h−1)h and f = (1/|K|)

∑
k∈K µ(k−1k. If

there exists an x ∈ H ∩K such that λ(x) 6= µ(x) then ef = 0.

Proof. Assume that such an element x exists. Then

ex =
∑
h∈H

λ(h−1)hx =
∑
h∈H

λ(xl−1)l = λ(x)
∑
h∈H

λ(l−1)l = λ(x)e.

Similarly
xf =

∑
k∈K

µ(k−1)xk =
∑
k∈K

µ(l−1x)l = µ(x)
∑
k∈K

µ(l−1)l = µ(x)f.

Hence λ(x)ef = exf = µ(x)ef , and since λ(x) 6= µ(x) it follows that ef = 0. �

Representation theory of the symmetric group

A partition of a positive integer n is a finite nonincreasing sequence of positive integers whose sum
is n. Thus, for example (4, 4, 2, 2, 2, 1) is a partition of 15. The table corresponding to a partition
(n1, n2, . . . , nk) of n is a sequence of k rows of boxes, with ni boxes in the row i, arranged so that
the jth box in row i+1 is placed directly below the jth box in row i. Thus the table corresponding
to the above partition of 15 is

.

A diagram is obtained by filling the boxes of the table with the numbers from 1 to n (in any order).
For example,

1 2 3 4

5 6 7 8

9 10

11 12

13 14

15

and

1 3 6 7

2 4 10 13

5 8

9 12

11 14

15

are two diagrams corresponding to this same partition. Of course there are precisely n! diagrams
for each partition of n.

Let D be a diagram corresponding to some partition of n. We shall say that numbers i and
j are collinear in D if they appear in the same row of D, and co-columnar if they appear in the
same column of D. The row group R(D) of D is the set of all permutations σ of {1, 2, . . . , n} such
that σi is in the same row of D as i, for each i ∈ {1, 2, . . . , n}:

R(D) = {σ ∈ Sn | i and σi are collinear in D for each i }.

Similarly, the column group of D is

C(D) = {σ ∈ Sn | i and σi are co-columnar in D for each i }.
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It is clear that R(D) and C(D) are subgroups of Sn. Thus if D is the second of the two examples
above then the column group of D is isomorphic to the direct product S6 × S5 × S2 × S2. Indeed,

C(D) = Sym{1, 2, 5, 9, 11, 15} × Sym{3, 4, 8, 12, 14} × Sym{6, 10} × Sym{7, 13}
=
{
σ1σ2σ3σ4 | σ1 ∈ Sym{1, 2, 5, 9, 11, 15}, σ2 ∈ Sym{3, 4, 8, 12, 14},

σ3 ∈ Sym{6, 10}, σ4 ∈ Sym{7, 13}
}
.

Similarly the row group of D is

R(D) = Sym{1, 3, 6, 7} × Sym{2, 4, 10, 13} × Sym{5, 8} × Sym{9, 12} × Sym{11, 14} × Sym{15},

where of course the last factor is a trivial group.
Our aim is to construct a collection of minimal left ideals in the group algebra CSn, and the

following notation will be useful for this purpose. If H is any subgroup of Sn we define

[H]1 =
∑
σ∈H

σ

[H]ε =
∑
σ∈H

ε(σ)σ

where ε(σ) is 1 if σ is an even permutation, −1 if σ is odd. It will transpire that if D is any diagram
then the element e(D) = [R(D)]1[C(D)]ε is a scalar multiple of a primitive idempotent in CSn, so
that CSne(D) is a minimal left ideal of CSn.

For example, let D be the diagram
1 2

3

so that R(D) is the group of order 2 generated by the transposition (1, 2), and C(D) similarly has
order 2 and is generated by (1, 3). Then

e(D) = (id + (1, 2))(id− (1, 3) = id + (1, 2)− (1, 3)− (1, 3, 2).

The left ideal CS3e(D) is the linear space spanned by the elements σe(D) obtained as σ runs through
all six elements of S3. But since (1, 2)[R(D)]1 = [R(D)]1 it follows that σe(D) = σ(1, 2)e(D) for
each value of σ, and so only three distinct products σe(D) are obtained as σ varies. These are

e(D) = id + (1, 2)− (1, 3)− (1, 3, 2)
(2, 3)e(D) = (2, 3) + (1, 3, 2)− (1, 2, 3)− (1, 2)

and
(1, 2, 3)e(D) = (1, 2, 3) + (1, 3)− (2, 3)− id,

and since the sum of these three is zero we deduce that the left ideal generated by e(D) is a two-
dimensional left CS3 module. Taking e(D) and (2, 3)e(D) as a basis we can easily compute the
matrix φ(σ) of the linear transformation of this module given by left multiplying by any element
σ ∈ S3. For example,

φ(1, 2) =
(

1 −1
0 −1

)
and φ(1, 2, 3) =

(
−1 1
−1 0

)
and it follows readily that the character of the representation φ is the irreducible character of S3

of degree 2.
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Lecture 20, 15/10/97

Let π be a partition of n. The symmetric group Sn has a permutation action on the set of all
diagrams corresponding to π, as follows: if D is a diagram and σ ∈ Sn then σD is the diagram
obtained from D by replacing i by σi (for all i ∈ {1, 2, . . . , n}). Thus, for example, if

D =

1 2 3 4

5 6 7

8

9

and D′ =

3 8 5 9

2 4 7

1

6

then D′ = (1, 3, 5, 2, 8)(4, 9, 6)(7)D. For any partition π of n the action of Sn on the set of all
diagrams corresponding to π is transitive, and the stabilizer of an element is trivial. Hence if D
is any fixed diagram then σ ↔ σD is a one to one correspondence between Sn and the set of all
diagrams for π: this permutation representation is thus essentially the regular representation of Sn.

Lemma. Let D be a diagram for some partition of n, and let σ ∈ Sn. Then R(σD) = σR(D)σ−1,
and C(σD) = σC(D)σ−1.

Proof. Let i, j ∈ {1, 2, . . . , n}. Then i, j are collinear in D if and only if σi and σj are collinear
in σD. Thus, for all τ ∈ Sn, the following condition

i and τi are collinear in D for all i ∈ {1, 2, . . . , n} (1)

is equivalent to
σi and σ(τi) are collinear in σD for all i ∈ {1, 2, . . . , n},

and if we put j = σi this becomes

j and (στσ−1)j are collinear in σD for all j ∈ {1, 2, . . . , n}. (2)

Now τ ∈ R(D) if and only if condition (1) holds, and στσ−1 ∈ R(σD) if and only if condition (2)
holds. Since we have shown that (1) and (2) are equivalent it follows that

σR(D)σ−1 = {στσ−1 | τ ∈ R(D) } = {στσ−1 | στσ−1 ∈ R(σD) } = R(σD).

The proof that C(σD) = σC(D)σ−1 is similar. �

Let π = (n1, n2, . . . , nk) and π′ = (m1,m2, . . . ,ml) be partitions of n. We say that π > π′ if
there exists a j such that nj > mj and ni = mi for all i < j. This is the so-called lexicographic
ordering of partitions: the first place in which two partitions differ determines which is greater.
Clearly, if π, π′ are distinct partitions then either π > π′ or π′ > π; in other words, we have a total
ordering of the set of all partitions of n.

The following combinatorial lemma is the key to our investigation of left ideals in CSn.

Lemma. Let (n1, n2, . . . , nk) ≥ (m1,m2, . . . ,ml) be of partitions of n, and let D, D′ be diagrams
for these partitions. Suppose that no two numbers are collinear in D and co-columnar in D′. Then
the partitions are equal, and D′ = ρσD for some ρ ∈ R(D) and σ ∈ C(D).

Proof. The n1 numbers in the first row of D all lie in different columns of D′. But D′ has n′1
columns, and n′1 ≤ n1. So n′1 = n1. Furthermore, each column of D′ contains a unique number
from the first row of D; so applying a suitable column permutation to D′ will take these n1 numbers
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into the first row. In other words, for some τ1 ∈ C(D′), the numbers in the first row of τ1D′ are
the same as the numbers in the first row of D (in some order). Note also that

C(τ1D′) = τ1C(D′)τ−1
1 = C(D′)

since τ1 ∈ C(D′). So numbers are co-columnar in τ1D
′ if and only if they are co-columnar in D′.

Note that since n1 = n′1 and π ≥ π′ it follows that n2 ≥ n′2. We now, in effect, cover up the first
rows of our diagrams and repeat the argument on the remainder. The n2 numbers in the second
row of D all lie in different columns of τ1D′ and not in the first row. But τ1D′ has only n′2 ≤ n2

columns which contain places outside the first row. So n′2 = n2, and each of these columns contains
a unique number from the second row of D. Applying a suitable column permutation to τ1D′ shifts
these n2 numbers to the second row without changing the first row. So we obtain a diagram τ2τ1D

′

which has the same numbers in the first row as D has in the first row, and also the same numbers
in the second row as D has in the second row. Moreover, since τ2 ∈ C(τ1D′) = C(D′) it follows
that the columns of τ2τ1D′ are permutations of the corresponding columns of τ1D′ and D′, and we
still have the property that no two numbers collinear in D are co-columnar in τ2τ1D

′.
Covering the first two rows and repeating the argument, and continuing on in this way, we

find that n′i = ni for all i ∈ {1, 2, . . . , k}, and there exists a permutation τ = τkτk−1 · · · τ1 ∈ C(D′)
such that, for all i, the diagram τD′ has the same numbers in its ith row as D has. So there is a
ρ ∈ R(D) such that ρD = τD′. Now since

τ−1 ∈ C(τD′) = C(ρD) = ρC(D)ρ−1,

it follows that if we put σ = ρ−1τ−1ρ then σ ∈ C(D). Furthermore,

ρσD = (ρρ−1τ−1)(ρD) = τ−1(τD′) = D′,

as required. �
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