Proposition. Let H, K be subgroups of the finite group G, and let $\lambda: H \rightarrow \mathbb{C}^{\times}$and $\mu: K \rightarrow \mathbb{C}^{\times}$ representations of degree 1. Let $e=(1 /|H|) \sum_{h \in H} \lambda\left(h^{-1}\right) h$ and $f=(1 /|K|) \sum_{k \in K} \mu\left(k^{-1} k\right.$. If there exists an $x \in H \cap K$ such that $\lambda(x) \neq \mu(x)$ then $e f=0$.

Proof. Assume that such an element x exists. Then

$$
e x=\sum_{h \in H} \lambda\left(h^{-1}\right) h x=\sum_{h \in H} \lambda\left(x l^{-1}\right) l=\lambda(x) \sum_{h \in H} \lambda\left(l^{-1}\right) l=\lambda(x) e
$$

Similarly

$$
x f=\sum_{k \in K} \mu\left(k^{-1}\right) x k=\sum_{k \in K} \mu\left(l^{-1} x\right) l=\mu(x) \sum_{k \in K} \mu\left(l^{-1}\right) l=\mu(x) f .
$$

Hence $\lambda(x)$ ef $=e x f=\mu(x) e f$, and since $\lambda(x) \neq \mu(x)$ it follows that $e f=0$.

Representation theory of the symmetric group

A partition of a positive integer n is a finite nonincreasing sequence of positive integers whose sum is n. Thus, for example $(4,4,2,2,2,1)$ is a partition of 15 . The table corresponding to a partition $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ of n is a sequence of k rows of boxes, with n_{i} boxes in the row i, arranged so that the j th box in row $i+1$ is placed directly below the j th box in row i. Thus the table corresponding to the above partition of 15 is

A diagram is obtained by filling the boxes of the table with the numbers from 1 to n (in any order). For example,

are two diagrams corresponding to this same partition. Of course there are precisely n ! diagrams for each partition of n.

Let D be a diagram corresponding to some partition of n. We shall say that numbers i and j are collinear in D if they appear in the same row of D, and co-columnar if they appear in the same column of D. The row group $R(D)$ of D is the set of all permutations σ of $\{1,2, \ldots, n\}$ such that σi is in the same row of D as i, for each $i \in\{1,2, \ldots, n\}$:

$$
R(D)=\left\{\sigma \in S_{n} \mid i \text { and } \sigma i \text { are collinear in } D \text { for each } i\right\}
$$

Similarly, the column group of D is

$$
C(D)=\left\{\sigma \in S_{n} \mid i \text { and } \sigma i \text { are co-columnar in } D \text { for each } i\right\}
$$

It is clear that $R(D)$ and $C(D)$ are subgroups of S_{n}. Thus if D is the second of the two examples above then the column group of D is isomorphic to the direct product $S_{6} \times S_{5} \times S_{2} \times S_{2}$. Indeed,

$$
\begin{aligned}
C(D)= & \operatorname{Sym}\{1,2,5,9,11,15\} \times \operatorname{Sym}\{3,4,8,12,14\} \times \operatorname{Sym}\{6,10\} \times \operatorname{Sym}\{7,13\} \\
= & \left\{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \mid \sigma_{1} \in \operatorname{Sym}\{1,2,5,9,11,15\}, \sigma_{2} \in \operatorname{Sym}\{3,4,8,12,14\},\right. \\
& \left.\sigma_{3} \in \operatorname{Sym}\{6,10\}, \sigma_{4} \in \operatorname{Sym}\{7,13\}\right\} .
\end{aligned}
$$

Similarly the row group of D is

$$
R(D)=\operatorname{Sym}\{1,3,6,7\} \times \operatorname{Sym}\{2,4,10,13\} \times \operatorname{Sym}\{5,8\} \times \operatorname{Sym}\{9,12\} \times \operatorname{Sym}\{11,14\} \times \operatorname{Sym}\{15\}
$$

where of course the last factor is a trivial group.
Our aim is to construct a collection of minimal left ideals in the group algebra $\mathbb{C} S_{n}$, and the following notation will be useful for this purpose. If H is any subgroup of S_{n} we define

$$
\begin{aligned}
{[H]_{1} } & =\sum_{\sigma \in H} \sigma \\
{[H]_{\varepsilon} } & =\sum_{\sigma \in H} \varepsilon(\sigma) \sigma
\end{aligned}
$$

where $\varepsilon(\sigma)$ is 1 if σ is an even permutation, -1 if σ is odd. It will transpire that if D is any diagram then the element $e(D)=[R(D)]_{1}[C(D)]_{\varepsilon}$ is a scalar multiple of a primitive idempotent in $\mathbb{C} S_{n}$, so that $\mathbb{C} S_{n} e(D)$ is a minimal left ideal of $\mathbb{C} S_{n}$.

For example, let D be the diagram

\[

\]

so that $R(D)$ is the group of order 2 generated by the transposition $(1,2)$, and $C(D)$ similarly has order 2 and is generated by $(1,3)$. Then

$$
e(D)=(\mathrm{id}+(1,2))(\mathrm{id}-(1,3)=\mathrm{id}+(1,2)-(1,3)-(1,3,2) .
$$

The left ideal $\mathbb{C} S_{3} e(D)$ is the linear space spanned by the elements $\sigma e(D)$ obtained as σ runs through all six elements of S_{3}. But since $(1,2)[R(D)]_{1}=[R(D)]_{1}$ it follows that $\sigma e(D)=\sigma(1,2) e(D)$ for each value of σ, and so only three distinct products $\sigma e(D)$ are obtained as σ varies. These are

$$
\begin{aligned}
e(D) & =\mathrm{id}+(1,2)-(1,3)-(1,3,2) \\
(2,3) e(D) & =(2,3)+(1,3,2)-(1,2,3)-(1,2)
\end{aligned}
$$

and

$$
(1,2,3) e(D)=(1,2,3)+(1,3)-(2,3)-\mathrm{id},
$$

and since the sum of these three is zero we deduce that the left ideal generated by $e(D)$ is a twodimensional left $\mathbb{C} S_{3}$ module. Taking $e(D)$ and $(2,3) e(D)$ as a basis we can easily compute the matrix $\phi(\sigma)$ of the linear transformation of this module given by left multiplying by any element $\sigma \in S_{3}$. For example,

$$
\phi(1,2)=\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right) \quad \text { and } \quad \phi(1,2,3)=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right)
$$

and it follows readily that the character of the representation ϕ is the irreducible character of S_{3} of degree 2 .

Let π be a partition of n. The symmetric group S_{n} has a permutation action on the set of all diagrams corresponding to π, as follows: if D is a diagram and $\sigma \in S_{n}$ then σD is the diagram obtained from D by replacing i by σi (for all $i \in\{1,2, \ldots, n\}$). Thus, for example, if
then $D^{\prime}=(1,3,5,2,8)(4,9,6)(7) D$. For any partition π of n the action of S_{n} on the set of all diagrams corresponding to π is transitive, and the stabilizer of an element is trivial. Hence if D is any fixed diagram then $\sigma \leftrightarrow \sigma D$ is a one to one correspondence between S_{n} and the set of all diagrams for π : this permutation representation is thus essentially the regular representation of S_{n}.

Lemma. Let D be a diagram for some partition of n, and let $\sigma \in S_{n}$. Then $R(\sigma D)=\sigma R(D) \sigma^{-1}$, and $C(\sigma D)=\sigma C(D) \sigma^{-1}$.

Proof. Let $i, j \in\{1,2, \ldots, n\}$. Then i, j are collinear in D if and only if σi and σj are collinear in σD. Thus, for all $\tau \in S_{n}$, the following condition

$$
\begin{equation*}
i \text { and } \tau i \text { are collinear in } D \text { for all } i \in\{1,2, \ldots, n\} \tag{1}
\end{equation*}
$$

is equivalent to

$$
\sigma i \text { and } \sigma(\tau i) \text { are collinear in } \sigma D \text { for all } i \in\{1,2, \ldots, n\}
$$

and if we put $j=\sigma i$ this becomes

$$
\begin{equation*}
j \text { and }\left(\sigma \tau \sigma^{-1}\right) j \text { are collinear in } \sigma D \text { for all } j \in\{1,2, \ldots, n\} . \tag{2}
\end{equation*}
$$

Now $\tau \in R(D)$ if and only if condition (1) holds, and $\sigma \tau \sigma^{-1} \in R(\sigma D)$ if and only if condition (2) holds. Since we have shown that (1) and (2) are equivalent it follows that

$$
\sigma R(D) \sigma^{-1}=\left\{\sigma \tau \sigma^{-1} \mid \tau \in R(D)\right\}=\left\{\sigma \tau \sigma^{-1} \mid \sigma \tau \sigma^{-1} \in R(\sigma D)\right\}=R(\sigma D) .
$$

The proof that $C(\sigma D)=\sigma C(D) \sigma^{-1}$ is similar.
Let $\pi=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ and $\pi^{\prime}=\left(m_{1}, m_{2}, \ldots, m_{l}\right)$ be partitions of n. We say that $\pi>\pi^{\prime}$ if there exists a j such that $n_{j}>m_{j}$ and $n_{i}=m_{i}$ for all $i<j$. This is the so-called lexicographic ordering of partitions: the first place in which two partitions differ determines which is greater. Clearly, if π, π^{\prime} are distinct partitions then either $\pi>\pi^{\prime}$ or $\pi^{\prime}>\pi$; in other words, we have a total ordering of the set of all partitions of n.

The following combinatorial lemma is the key to our investigation of left ideals in $\mathbb{C} S_{n}$.
Lemma. Let $\left(n_{1}, n_{2}, \ldots, n_{k}\right) \geq\left(m_{1}, m_{2}, \ldots, m_{l}\right)$ be of partitions of n, and let D, D^{\prime} be diagrams for these partitions. Suppose that no two numbers are collinear in D and co-columnar in D^{\prime}. Then the partitions are equal, and $D^{\prime}=\rho \sigma D$ for some $\rho \in R(D)$ and $\sigma \in C(D)$.

Proof. The n_{1} numbers in the first row of D all lie in different columns of D^{\prime}. But D^{\prime} has n_{1}^{\prime} columns, and $n_{1}^{\prime} \leq n_{1}$. So $n_{1}^{\prime}=n_{1}$. Furthermore, each column of D^{\prime} contains a unique number from the first row of D; so applying a suitable column permutation to D^{\prime} will take these n_{1} numbers
into the first row. In other words, for some $\tau_{1} \in C\left(D^{\prime}\right)$, the numbers in the first row of $\tau_{1} D^{\prime}$ are the same as the numbers in the first row of D (in some order). Note also that

$$
C\left(\tau_{1} D^{\prime}\right)=\tau_{1} C\left(D^{\prime}\right) \tau_{1}^{-1}=C\left(D^{\prime}\right)
$$

since $\tau_{1} \in C\left(D^{\prime}\right)$. So numbers are co-columnar in $\tau_{1} D^{\prime}$ if and only if they are co-columnar in D^{\prime}.
Note that since $n_{1}=n_{1}^{\prime}$ and $\pi \geq \pi^{\prime}$ it follows that $n_{2} \geq n_{2}^{\prime}$. We now, in effect, cover up the first rows of our diagrams and repeat the argument on the remainder. The n_{2} numbers in the second row of D all lie in different columns of $\tau_{1} D^{\prime}$ and not in the first row. But $\tau_{1} D^{\prime}$ has only $n_{2}^{\prime} \leq n_{2}$ columns which contain places outside the first row. So $n_{2}^{\prime}=n_{2}$, and each of these columns contains a unique number from the second row of D. Applying a suitable column permutation to $\tau_{1} D^{\prime}$ shifts these n_{2} numbers to the second row without changing the first row. So we obtain a diagram $\tau_{2} \tau_{1} D^{\prime}$ which has the same numbers in the first row as D has in the first row, and also the same numbers in the second row as D has in the second row. Moreover, since $\tau_{2} \in C\left(\tau_{1} D^{\prime}\right)=C\left(D^{\prime}\right)$ it follows that the columns of $\tau_{2} \tau_{1} D^{\prime}$ are permutations of the corresponding columns of $\tau_{1} D^{\prime}$ and D^{\prime}, and we still have the property that no two numbers collinear in D are co-columnar in $\tau_{2} \tau_{1} D^{\prime}$.

Covering the first two rows and repeating the argument, and continuing on in this way, we find that $n_{i}^{\prime}=n_{i}$ for all $i \in\{1,2, \ldots, k\}$, and there exists a permutation $\tau=\tau_{k} \tau_{k-1} \cdots \tau_{1} \in C\left(D^{\prime}\right)$ such that, for all i, the diagram τD^{\prime} has the same numbers in its i th row as D has. So there is a $\rho \in R(D)$ such that $\rho D=\tau D^{\prime}$. Now since

$$
\tau^{-1} \in C\left(\tau D^{\prime}\right)=C(\rho D)=\rho C(D) \rho^{-1}
$$

it follows that if we put $\sigma=\rho^{-1} \tau^{-1} \rho$ then $\sigma \in C(D)$. Furthermore,

$$
\rho \sigma D=\left(\rho \rho^{-1} \tau^{-1}\right)(\rho D)=\tau^{-1}\left(\tau D^{\prime}\right)=D^{\prime},
$$

as required.

