The group S_{4}, consisting of all permutations of $\{1,2,3,4\}$, has 24 elements. It has a subgroup $K=\{(12)(34),(13)(24),(14)(23)\}$, and another subgroup $L=\{(12),(13),(23),(123),(132)\}$, the former being isomorphic to $C_{2} \times C_{2}$ and the latter to S_{3}. Each element of S_{4} is uniquely expressible in the form $l k$ with $l \in L$ and $k \in K$, and K is a normal subgroup, so that it follows that S_{4} is isomorphic to a semidirect product of L and K. You can compute $l k l^{-1}$ for each $l \in L$ and $k \in K$ in the following manner: simply write down the element k in cycle notation, and then permute the numbers 1,2 and 3 according to the permutation l. Thus, for example, suppose that $l=(123)$ and $k=(13)(24)$. In the expression for k, permute 1,2 and 3 cyclically; that is, put 2 where 1 is currently, 3 where 2 is and 1 where 3 is. This gives $(21)(34)$ (which is the same as $(12)(34))$. It can be checked that $(123)(13)(24)(132)=(12)(34)$. For example, looking at the product on the left hand side, we find that $1 \mapsto 3 \mapsto 1 \mapsto 2$, in agreement with the right hand side.

Write \mathbb{Z}_{3} for the integers modulo 3 , so that $\mathbb{Z}_{3}=\{0,1,-1\}$, where $1+1=2=-1$. The number of 2×2 matrices over \mathbb{Z}_{3} is $3^{4}=81$, and of these 48 have inverses. These 48 matrices form a group, known as $\mathrm{GL}(2,3)$, the general linear group of degree 2 over \mathbb{Z}_{3}. It has a subgroup

$$
S=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a \in\{ \pm 1\} b \in \mathbb{Z}_{3}\right\}
$$

which is isomorphic to S_{3}, and another interesting subgroup, Q, consisting of the following eight matrices: $\pm I, \pm A_{1}, \pm A_{2}, \pm A_{3}$, where

$$
A_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right)
$$

These satisfy the relations $A_{1}^{2}=A_{2}^{2}=A_{3}^{2}=-I$, and $A_{i} A_{j}= \pm A_{k}$, whenever $\left[\begin{array}{lll}1 & 2 & 3 \\ i & j & k\end{array}\right]$ is a permutation of $\{1,2,3\}$, the sign being + if the permutation is even, - if it is odd. The group Q is known as the quaternion group of order 8 .

The group $G=\operatorname{GL}(2,3)$ itself is another example of a semidirect product, the subgroup Q being normal, and every element of G being expressible as a product $s q$ with $s \in S$ and $q \in Q$. Normality of Q means that $s q s^{-1} \in Q$ whenever $s \in S$ and $q \in Q$. It is possible to set up an isomorphism between S and S_{3} in such a way that if $X \in S$ corresponds to the permutation σ of $\{1,2,3\}$ then for each i,

$$
X A_{i} X^{-1}= \pm A_{\sigma i}
$$

where the sign is + if σ is even, - if σ is odd.

