The group S_4 , consisting of all permutations of $\{1, 2, 3, 4\}$, has 24 elements. It has a subgroup $K = \{(12)(34), (13)(24), (14)(23)\}$, and another subgroup $L = \{(12), (13), (23), (123), (132)\}$, the former being isomorphic to $C_2 \times C_2$ and the latter to S_3 . Each element of S_4 is uniquely expressible in the form lk with $l \in L$ and $k \in K$, and K is a normal subgroup, so that it follows that S_4 is isomorphic to a semidirect product of L and K. You can compute lkl^{-1} for each $l \in L$ and $k \in K$ in the following manner: simply write down the element k in cycle notation, and then permute the numbers 1, 2 and 3 according to the permutation l. Thus, for example, suppose that l = (123) and k = (13)(24). In the expression for k, permute 1, 2 and 3 cyclically; that is, put 2 where 1 is currently, 3 where 2 is and 1 where 3 is. This gives (21)(34) (which is the same as (12)(34)). It can be checked that (123)(13)(24)(132) = (12)(34). For example, looking at the product on the left hand side, we find that $1 \mapsto 3 \mapsto 1 \mapsto 2$, in agreement with the right hand side.

Write \mathbb{Z}_3 for the integers modulo 3, so that $\mathbb{Z}_3 = \{0, 1, -1\}$, where 1 + 1 = 2 = -1. The number of 2×2 matrices over \mathbb{Z}_3 is $3^4 = 81$, and of these 48 have inverses. These 48 matrices form a group, known as GL(2,3), the general linear group of degree 2 over \mathbb{Z}_3 . It has a subgroup

$$S = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a \in \{\pm 1\} \ b \in \mathbb{Z}_3 \right\}$$

which is isomorphic to S_3 , and another interesting subgroup, Q, consisting of the following eight matrices: $\pm I$, $\pm A_1$, $\pm A_2$, $\pm A_3$, where

$$A_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}.$$

These satisfy the relations $A_1^2 = A_2^2 = A_3^2 = -I$, and $A_i A_j = \pm A_k$, whenever $\begin{bmatrix} 1 & 2 & 3 \\ i & j & k \end{bmatrix}$ is a permutation of $\{1, 2, 3\}$, the sign being + if the permutation is even, - if it is odd. The group Q is known as the *quaternion group* of order 8.

The group G = GL(2,3) itself is another example of a semidirect product, the subgroup Q being normal, and every element of G being expressible as a product sq with $s \in S$ and $q \in Q$. Normality of Q means that $sqs^{-1} \in Q$ whenever $s \in S$ and $q \in Q$. It is possible to set up an isomorphism between S and S_3 in such a way that if $X \in S$ corresponds to the permutation σ of $\{1,2,3\}$ then for each i,

$$XA_iX^{-1} = \pm A_{\sigma i},$$

where the sign is + if σ is even, - if σ is odd.