
Group representation theory Lecture 5, 11/8/97

Suppose that a group G has an action on a set S. For variety, we shall assume that this is a right
action, but totally analogous statements are also valid for left actions. For each s ∈ G the subset
of G

StabG(s) = { g ∈ G | sg = s }

is called the stabilizer of s in G. It is quite straightforward to observe that 1 ∈ StabG(s), that
g−1 ∈ StabG(s) whenever x ∈ StabG(s), and that xy ∈ StabG(s) whenever x, y ∈ StabG(s). Hence
the stabilizer of S is a subgroup of G. The subset of S

O = { sg | g ∈ G }

is called the orbit of s under the action of G. If O = S then the action of G on S is said to be
transitive.

As a temporary notation, for s, t ∈ S let us write s ∼ t if there exists g ∈ G such that sg = t.
Since s1 = s we have that s ∼ s, for all s ∈ S; so the relation ∼ is reflexive. If sg = t then
tg−1 = s; thus if s ∼ t then t ∼ s, and so ∼ is symmetric. And ∼ is also transitive, since if
s, t, u ∈ S with s ∼ t and t ∼ u then there exist g, h ∈ G with sg = t and th = u, and this yields
s ∼ u since s(gh) = (sg)h = th = u. Thus ∼ is an equivalence relation, and in consequence the
set S is the disjoint union of ∼-equivalence classes. The equivalence class containing s is the set
{ t ∈ S | s ∼ t } = { sg | g ∈ G }, which is precisely the orbit of s. The orbits of G on S are the
equivalence classes for the relation ∼ as defined above.

One can see that if the stabilizer of an element s is large then the orbit of s is small, and vice
versa. The two extreme cases are as follows: if the stabilizer of s is the whole group G then the orbit
is the singleton set {s}; if the stabilizer is the trivial subgroup consisting of the identity element
alone, then the elements of the orbit of s are in one to one correspondence with the elements of G
(since if g, h ∈ G and sg = sh then s(gh−1) = s, which means that gh−1 ∈ StabG(s) = {1}, and
hence g = h). In the general case, if we write L = StabG(s) then sg = sh if and only if gh−1 ∈ L,
which is equivalent to g ∈ Lh, and this in turn is equivalent to equality of the right cosets Lg
and Lh. (If we had started with a left action we would have obtained left cosets at this point:
gs = hs if and only if gL = hL.) So we conclude that there is a well defined bijective mapping
sg 7→ Lg from the orbit O = { sg | g ∈ G } to the set {Lg | g ∈ G } (whose elements are the right
cosets in G of the stabilizer of s). Thus if g1, g2, . . . , gm is a right transversal for L, so that

G = Lg1 ∪̇ Lg2 ∪̇ · · · ∪̇ Lgm

(where “∪̇” indicates disjoint union) then

O = {sg1, sg2, . . . , sgm},

and the sgi are pairwise distinct.
There are two different ways to define right actions of a group G on G itself. Firstly, the

group’s multiplication operation G×G→ G can be interpreted as a function S×G→ S, where the
set S is equal to G. The group axioms immediately imply that this function satisfies the defining
properties of a right action. We shall call this the right multiplication action of G on itself. It
is a transitive action—there is only one orbit—since if s, t ∈ G are arbitrary then the element
g = s−1t satisfies sg = t. Furthermore, the stabilizer of any element is trivial, since sg = g implies
g = 1. The other standard action of G on itself is the conjugacy action. To avoid confusion with
the right multiplication action we use an exponential notation for the conjugacy action, and define
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xg = g−1xg for all x, g ∈ G. Note that whereas the right multiplication action is an action of G
on G considered only as a set, the conjugacy action is an action of G on G considered as a group.
For not only do we have x1 = 1−1x1 = x and

xgh = (gh)−1x(gh) = h−1(g−1xg)h = (g−1xg)h = (xg)h,

for all x, g, h ∈ G, but also

(xy)g = g−1(xy)g = (g−1xg)(g−1yg) = xgyg

for all x, y, g ∈ G. The orbits of G under the conjugacy action of G are of course the conjugacy
classes, as defined in Lecture 4.

Intertwining matrices

Let U and V be vector spaces over the complex field which are modules for the group G, and let
f :U → V be a G-homomorphism. That is, f is a linear map which satisfies g(fu) = f(gu) for all
u ∈ U and g ∈ G. Let ρ:G → GL(V ) and σ:G → GL(U) be the representations of G on V and
U respectively. That is, if g ∈ G then ρg is the linear transformation of V given by v 7→ gv for all
v ∈ V , and σg is the linear transformation of U given by u 7→ gu for all u ∈ U . For all u ∈ U we
have

((ρg)f)u = (ρg)(fu) = g(fu) = f(gu) = f((σg)u) = (f(σg))u,

and so (ρg)f = f(σg). This holds for all g ∈ G. A function f which satisfies (ρg)f = f(σg) is said
to intertwine the representations ρ and σ. So here again we have two words being used to describe
the same concept: an intertwining function is the same thing as a G-homomorphism.

Suppose that u1, u2, . . . , un is a basis for U and v1, v2, . . . , vm is a basis for V , and let A
be the matrix of f relative to these two bases. Thus A is the m × n matrix with (i, j)-entry aij
satisfying fuj =

∑m
i=1 aijvi. For each g ∈ G let Rg ∈ GL(m,C) be the matrix relative to the

basis v1, v2, . . . , vm of the transformation v 7→ gv of the space V , and let Sg ∈ GL(n,C) be the
matrix relative to the basis u1, u2, . . . , um of the transformation u 7→ gu of the space U . So R
and S are matrix versions of the representations ρ and σ. And the matrix version of the equation
(ρg)f = f(σg) is (Rg)A = A(Sg).

Definition. If R and S are matrix representations of the group G of degrees m and n respectively
then an m× n matrix A is said to intertwine R and S if (Rg)A = A(Sg) for all g ∈ G.

So an intertwining matrix is the matrix version of a G-homomorphism.
Recall that a linear map is invertible if and only if its matrix (relative to any bases) is invertible.

Of course, a matrix A can only be invertible if it is square, and this corresponds to the fact that a
linear map U → V can only be invertible if U and V have the same dimension. A G-homomorphism
U → V is called a G-isomorphism if it is invertible. The matrix version of this is an intertwining
matrix which is invertible. Now if A is invertible then the equation (Rg)A = A(Sg) can be rewritten
as Rg = A(Sg)A−1, and, by a definition from Lecture 3, this means that the representations R
and S are equivalent. Conversely, if R and S are equivalent, so that there exists an invertible
intertwining matrix A, then the linear map f :U → V whose matrix relative to our two fixed bases
is A is a G-isomorphism. So we can say that two G-modules are G-isomorphic if and only if the
corresponding matrix representations (relative to any bases) are equivalent.

Quotient modules

If S and T are arbitrary subsets of the group G then it is customary to define their product ST by
the rule that ST = { st | s ∈ S, and t ∈ T }. If H is a normal subgroup of G, so that gH = Hg

2



for all g ∈ G, then (xH)(yH) = (xy)H for all x, y ∈ G. This yields a well-defined multiplication
operation on the set G/H = { gH | g ∈ G }, and it can be checked that under this operation G/H
is a group. The group G/H is called the quotient of G by H.

If the group G is Abelian (commutative) then every subgroup H is normal, and so the quotient
group always exists. In particular, if V is a vector space over a field F then V is an abelian group
under the operation of vector addition, and since any vector subspace U of V is also an additive
subgroup of V it follows that the quotient group V/U can be formed. It is clear hat V/U is Abelian.
Note that since the operation on V in this case is written as +, the coset of U containing the element
v ∈ V is written as v + U rather than vU , and the group operation on V/U is also written as +.
We have V/U = { v + U | v ∈ V },

(x+ U) + (y + U) = (x+ y) + U for all x, y ∈ U .

We now give V/U some extra structure, by defining a scalar multiplication operation on it. The
relevant formula is as follows:

λ(v + U) = (λv) + U for all v ∈ V and λ ∈ F .

It is necessary to check that this is well-defined, since it is possible to have v1 +U = v2 +U without
having v1 = v2. But if v1 +U = v2 +U then v1−v2 ∈ U , and since the subspace U has to be closed
under scalar multiplication it follows that λv1−λv2 = λ(v1−v2) ∈ U , and hence λv1 +U = λv2 +U .
This shows that λv+U does not depend on the choice of the representative element v in the coset
v+U , but only on the coset v+U itself. In other words, the formula above does give a well-defined
scalar multiplication operation on V/U .

Recall that a vector space over F is a set—whose elements we call “vectors”—equipped with
addition and scalar multiplication operations, such that the following eight axioms are satisfied:
(i) (u+ v) + w = u+ (v + w) for all vectors u, v and w;
(ii) u+ v = v + u for all vectors u and v;
(ii) there is a zero vector 0, satisfying 0 + v = v for all vectors v;
(iv) each vector v has a negative, which is a vector −v satisfying v + (−v) = 0;
(v) λ(µv) = (λµ)v for all scalars λ and µ and all vectors v;
(vi) 1v = v for all vectors v, where 1 is the identity element of F ;
(vii) λ(u+ v) = λu+ λv for all vectors u and v and all scalars λ;
(viii) (λ+ µ)v = λv + µv for all scalars λ and µ and all vectors v.

It is trivial to check that the addition and scalar multiplication operations we have defined on
V/U satisfy these axioms. (Of course the first five of the axioms just say that a vector space is an
abelian group under addition, and we had already noted above that V/U satisfies this.) It is left
to the reader to check all the details. We call V/U a quotient (vector) space.

We proceed to embellish the above situation further by assuming that V and U are equipped
with G-actions. More precisely, suppose that V is a G-module and U a submodule of V . Then the
quotient space V/U is also a G-module, with G-action satisying

g(v + U) = (gv) + U for all g ∈ G and v ∈ V .

As with addition and scalar multiplication, it is crucial to check that this G-action is well defined.
The argument needed is totally analogous to the argument in the scalar multiplication case: if
v1 + U = v2 + U then v1 − v2 ∈ U , and since U is closed under the G action it follows that
gv1 − gv2 = g(v1 − gv2) ∈ U , whence gv1 +U = gv2 +U . It is again left to the reader to check the
axioms.
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