Group representation theory

Suppose that a group G has an action on a set S. For variety, we shall assume that this is a right action, but totally analogous statements are also valid for left actions. For each $s \in G$ the subset of G

$$
\operatorname{Stab}_{G}(s)=\{g \in G \mid s g=s\}
$$

is called the stabilizer of s in G. It is quite straightforward to observe that $1 \in \operatorname{Stab}_{G}(s)$, that $g^{-1} \in \operatorname{Stab}_{G}(s)$ whenever $x \in \operatorname{Stab}_{G}(s)$, and that $x y \in \operatorname{Stab}_{G}(s)$ whenever $x, y \in \operatorname{Stab}_{G}(s)$. Hence the stabilizer of S is a subgroup of G. The subset of S

$$
\mathcal{O}=\{s g \mid g \in G\}
$$

is called the orbit of s under the action of G. If $\mathcal{O}=S$ then the action of G on S is said to be transitive.

As a temporary notation, for $s, t \in S$ let us write $s \sim t$ if there exists $g \in G$ such that $s g=t$. Since $s 1=s$ we have that $s \sim s$, for all $s \in S$; so the relation \sim is reflexive. If $s g=t$ then $t g^{-1}=s$; thus if $s \sim t$ then $t \sim s$, and so \sim is symmetric. And \sim is also transitive, since if $s, t, u \in S$ with $s \sim t$ and $t \sim u$ then there exist $g, h \in G$ with $s g=t$ and $t h=u$, and this yields $s \sim u$ since $s(g h)=(s g) h=t h=u$. Thus \sim is an equivalence relation, and in consequence the set S is the disjoint union of \sim-equivalence classes. The equivalence class containing s is the set $\{t \in S \mid s \sim t\}=\{s g \mid g \in G\}$, which is precisely the orbit of s. The orbits of G on S are the equivalence classes for the relation \sim as defined above.

One can see that if the stabilizer of an element s is large then the orbit of s is small, and vice versa. The two extreme cases are as follows: if the stabilizer of s is the whole group G then the orbit is the singleton set $\{s\}$; if the stabilizer is the trivial subgroup consisting of the identity element alone, then the elements of the orbit of s are in one to one correspondence with the elements of G (since if $g, h \in G$ and $s g=s h$ then $s\left(g h^{-1}\right)=s$, which means that $g h^{-1} \in \operatorname{Stab}_{G}(s)=\{1\}$, and hence $g=h$). In the general case, if we write $L=\operatorname{Stab}_{G}(s)$ then $s g=s h$ if and only if $g h^{-1} \in L$, which is equivalent to $g \in L h$, and this in turn is equivalent to equality of the right cosets $L g$ and $L h$. (If we had started with a left action we would have obtained left cosets at this point: $g s=h s$ if and only if $g L=h L$.) So we conclude that there is a well defined bijective mapping $s g \mapsto L g$ from the orbit $\mathcal{O}=\{s g \mid g \in G\}$ to the set $\{L g \mid g \in G\}$ (whose elements are the right cosets in G of the stabilizer of s). Thus if $g_{1}, g_{2}, \ldots, g_{m}$ is a right transversal for L, so that

$$
G=L g_{1} \dot{\cup} L g_{2} \dot{\cup} \cdots \dot{\cup} L g_{m}
$$

(where "ن̉" indicates disjoint union) then

$$
\mathcal{O}=\left\{s g_{1}, s g_{2}, \ldots, s g_{m}\right\}
$$

and the $s g_{i}$ are pairwise distinct.
There are two different ways to define right actions of a group G on G itself. Firstly, the group's multiplication operation $G \times G \rightarrow G$ can be interpreted as a function $S \times G \rightarrow S$, where the set S is equal to G. The group axioms immediately imply that this function satisfies the defining properties of a right action. We shall call this the right multiplication action of G on itself. It is a transitive action-there is only one orbit-since if $s, t \in G$ are arbitrary then the element $g=s^{-1} t$ satisfies $s g=t$. Furthermore, the stabilizer of any element is trivial, since $s g=g$ implies $g=1$. The other standard action of G on itself is the conjugacy action. To avoid confusion with the right multiplication action we use an exponential notation for the conjugacy action, and define
$x^{g}=g^{-1} x g$ for all $x, g \in G$. Note that whereas the right multiplication action is an action of G on G considered only as a set, the conjugacy action is an action of G on G considered as a group. For not only do we have $x^{1}=1^{-1} x 1=x$ and

$$
x^{g h}=(g h)^{-1} x(g h)=h^{-1}\left(g^{-1} x g\right) h=\left(g^{-1} x g\right)^{h}=\left(x^{g}\right)^{h}
$$

for all $x, g, h \in G$, but also

$$
(x y)^{g}=g^{-1}(x y) g=\left(g^{-1} x g\right)\left(g^{-1} y g\right)=x^{g} y^{g}
$$

for all $x, y, g \in G$. The orbits of G under the conjugacy action of G are of course the conjugacy classes, as defined in Lecture 4.

Intertwining matrices

Let U and V be vector spaces over the complex field which are modules for the group G, and let $f: U \rightarrow V$ be a G-homomorphism. That is, f is a linear map which satisfies $g(f u)=f(g u)$ for all $u \in U$ and $g \in G$. Let $\rho: G \rightarrow \mathrm{GL}(V)$ and $\sigma: G \rightarrow \mathrm{GL}(U)$ be the representations of G on V and U respectively. That is, if $g \in G$ then ρg is the linear transformation of V given by $v \mapsto g v$ for all $v \in V$, and σg is the linear transformation of U given by $u \mapsto g u$ for all $u \in U$. For all $u \in U$ we have

$$
((\rho g) f) u=(\rho g)(f u)=g(f u)=f(g u)=f((\sigma g) u)=(f(\sigma g)) u
$$

and so $(\rho g) f=f(\sigma g)$. This holds for all $g \in G$. A function f which satisfies $(\rho g) f=f(\sigma g)$ is said to intertwine the representations ρ and σ. So here again we have two words being used to describe the same concept: an intertwining function is the same thing as a G-homomorphism.

Suppose that $u_{1}, u_{2}, \ldots, u_{n}$ is a basis for U and $v_{1}, v_{2}, \ldots, v_{m}$ is a basis for V, and let A be the matrix of f relative to these two bases. Thus A is the $m \times n$ matrix with (i, j)-entry $a_{i j}$ satisfying $f u_{j}=\sum_{i=1}^{m} a_{i j} v_{i}$. For each $g \in G$ let $R g \in G L(m, \mathbb{C})$ be the matrix relative to the basis $v_{1}, v_{2}, \ldots, v_{m}$ of the transformation $v \mapsto g v$ of the space V, and let $S g \in \operatorname{GL}(n, \mathbb{C})$ be the matrix relative to the basis $u_{1}, u_{2}, \ldots, u_{m}$ of the transformation $u \mapsto g u$ of the space U. So R and S are matrix versions of the representations ρ and σ. And the matrix version of the equation $(\rho g) f=f(\sigma g)$ is $(R g) A=A(S g)$.

Definition. If R and S are matrix representations of the group G of degrees m and n respectively then an $m \times n$ matrix A is said to intertwine R and S if $(R g) A=A(S g)$ for all $g \in G$.

So an intertwining matrix is the matrix version of a G-homomorphism.
Recall that a linear map is invertible if and only if its matrix (relative to any bases) is invertible. Of course, a matrix A can only be invertible if it is square, and this corresponds to the fact that a linear map $U \rightarrow V$ can only be invertible if U and V have the same dimension. A G-homomorphism $U \rightarrow V$ is called a G-isomorphism if it is invertible. The matrix version of this is an intertwining matrix which is invertible. Now if A is invertible then the equation $(R g) A=A(S g)$ can be rewritten as $R g=A(S g) A^{-1}$, and, by a definition from Lecture 3, this means that the representations R and S are equivalent. Conversely, if R and S are equivalent, so that there exists an invertible intertwining matrix A, then the linear map $f: U \rightarrow V$ whose matrix relative to our two fixed bases is A is a G-isomorphism. So we can say that two G-modules are G-isomorphic if and only if the corresponding matrix representations (relative to any bases) are equivalent.

Quotient modules

If S and T are arbitrary subsets of the group G then it is customary to define their product $S T$ by the rule that $S T=\{s t \mid s \in S$, and $t \in T\}$. If H is a normal subgroup of G, so that $g H=H g$
for all $g \in G$, then $(x H)(y H)=(x y) H$ for all $x, y \in G$. This yields a well-defined multiplication operation on the set $G / H=\{g H \mid g \in G\}$, and it can be checked that under this operation G / H is a group. The group G / H is called the quotient of G by H.

If the group G is Abelian (commutative) then every subgroup H is normal, and so the quotient group always exists. In particular, if V is a vector space over a field F then V is an abelian group under the operation of vector addition, and since any vector subspace U of V is also an additive subgroup of V it follows that the quotient group V / U can be formed. It is clear hat V / U is Abelian. Note that since the operation on V in this case is written as + , the coset of U containing the element $v \in V$ is written as $v+U$ rather than $v U$, and the group operation on V / U is also written as + . We have $V / U=\{v+U \mid v \in V\}$,

$$
(x+U)+(y+U)=(x+y)+U \quad \text { for all } x, y \in U
$$

We now give V / U some extra structure, by defining a scalar multiplication operation on it. The relevant formula is as follows:

$$
\lambda(v+U)=(\lambda v)+U \quad \text { for all } v \in V \text { and } \lambda \in F
$$

It is necessary to check that this is well-defined, since it is possible to have $v_{1}+U=v_{2}+U$ without having $v_{1}=v_{2}$. But if $v_{1}+U=v_{2}+U$ then $v_{1}-v_{2} \in U$, and since the subspace U has to be closed under scalar multiplication it follows that $\lambda v_{1}-\lambda v_{2}=\lambda\left(v_{1}-v_{2}\right) \in U$, and hence $\lambda v_{1}+U=\lambda v_{2}+U$. This shows that $\lambda v+U$ does not depend on the choice of the representative element v in the coset $v+U$, but only on the coset $v+U$ itself. In other words, the formula above does give a well-defined scalar multiplication operation on V / U.

Recall that a vector space over F is a set-whose elements we call "vectors" - equipped with addition and scalar multiplication operations, such that the following eight axioms are satisfied:
(i) $(u+v)+w=u+(v+w)$ for all vectors u, v and w;
(ii) $u+v=v+u$ for all vectors u and v;
(ii) there is a zero vector 0 , satisfying $0+v=v$ for all vectors v;
(iv) each vector v has a negative, which is a vector $-v$ satisfying $v+(-v)=0$;
(v) $\lambda(\mu v)=(\lambda \mu) v$ for all scalars λ and μ and all vectors v;
(vi) $1 v=v$ for all vectors v, where 1 is the identity element of F;
(vii) $\lambda(u+v)=\lambda u+\lambda v$ for all vectors u and v and all scalars λ;
(viii) $(\lambda+\mu) v=\lambda v+\mu v$ for all scalars λ and μ and all vectors v.

It is trivial to check that the addition and scalar multiplication operations we have defined on V / U satisfy these axioms. (Of course the first five of the axioms just say that a vector space is an abelian group under addition, and we had already noted above that V / U satisfies this.) It is left to the reader to check all the details. We call V / U a quotient (vector) space.

We proceed to embellish the above situation further by assuming that V and U are equipped with G-actions. More precisely, suppose that V is a G-module and U a submodule of V. Then the quotient space V / U is also a G-module, with G-action satisying

$$
g(v+U)=(g v)+U \quad \text { for all } g \in G \text { and } v \in V .
$$

As with addition and scalar multiplication, it is crucial to check that this G-action is well defined. The argument needed is totally analogous to the argument in the scalar multiplication case: if $v_{1}+U=v_{2}+U$ then $v_{1}-v_{2} \in U$, and since U is closed under the G action it follows that $g v_{1}-g v_{2}=g\left(v_{1}-g v_{2}\right) \in U$, whence $g v_{1}+U=g v_{2}+U$. It is again left to the reader to check the axioms.

