
Group representation theory Lecture 6, 13/8/97

The First Isomorphism Theorem Let V and W be G-modules and let f :V → W be a G-
homomorphism. Then

ker f = { v ∈ V | fv = 0 }

is a G-submodule of V ,
im f = { fv | v ∈ V }

is a G-submodule of W , and there is a G-isomorphism V/ ker f → im f such that v + U 7→ gv for
all v ∈ V .

A similar theorem is valid for vector spaces without any G-actions: if U and V are vector
spaces an f :V → W a linear map then the kernel and image of f are subspaces of V and W ,
and the quotient space V/ ker f is isomorphic to im f . This result is sometimes called “The Main
Theorem on Linear Mappings”. Because two vector spaces are isomorphic if and only if they have
the same dimension, it is common to state the result in terms of dimensions, and since it is easily
shown that dim(V/U) = dimV − dimU the statement becomes dimV = dim(ker f) + dim(im f).

Turning to the proof of the theorem in the form stated above, let us first show that ker f is a
G-submodule of V . Since f is linear we have that f(0V ) = 0W , and so 0V ∈ ker f . If v1, v2 ∈ ker f
then f(v1 + v2) = fv1 + fv2 = 0 + 0 = 0, whence v1 + v2 ∈ ker f , and it follows that ker f is closed
under addition. If v ∈ ker f and λ ∈ F then f(λv) = λ(fv) = λ0 = 0, and it follows that ker f is
closed under scalar multiplication. So ker f is vector subspace of V . Furthermore, ker f is closed
under the G-action, since if v ∈ ker f and g ∈ G then f(gv) = g(fv) = g0 = 0, where the last step
follows from the fact that x 7→ gx is a linear map V → V and must therefore take 0 to 0.

The proof that im f is a submodule of W is equally easy. If w1, w2 ∈ im f then w1 = fv1

and w2 = fv2 for some vi ∈ V , and since w1 + w2 = fv1 + fv2 = f(v1 + v2) it follows that im f
is closed under addition. Closure under scalar multiplication and the G-action are equally easy:
if w = fv ∈ im f then for all λ ∈ F we have λw = f(λv) ∈ im f , and for all g ∈ G we have
gw = g(fv) = f(gv) ∈ im f . And im f 6= ∅ since V 6= ∅. So im f is a submodule of W .

Because ker f is a submodule of V the quotient module V/ ker f exists. We need to show
that there is a well-defined map ψ:V/ ker f → im f such that ψ(v + ker f) = fv for all v ∈ V .
It is certainly true that fv ∈ im f for all v, and so we need only to show that if v1, v2 ∈ V with
v1+ker f = v2+ker f then fv1 = fv2. But this is clear: if v1+ker f = v2+ker f then v1−v2 ∈ ker f ;
so f(v1 − v2) = 0, and hence fv1 = fv2.

Having established that ψ is well-defined, it remains to show that it is bijective and respects
addition, scalar multiplication and the action of G. The latter point follows immediately from the
fact that f respects addition, scalar multiplication and the action of G. Explicitly, if u, v ∈ V and
λ ∈ F then

ψ((u+ ker f) + (v+ ker f)) = ψ((u+ v) + ker f) = f(u+ v) = fu+ fv = ψ(u+ ker f) +ψ(v+ ker f)
and

ψ(λ(v + ker f)) = ψ(λv + ker f) = f(λv) = λ(fv) = λψ(v + ker f),

and similarly if g ∈ G,

ψ(g(v + ker f)) = ψ(gv + ker f) = f(gv) = g(fv) = gψ(v + ker f).

Surjectivity of ψ is obvious: by definition every element of im f has the form fv = ψ(v+ ker f) for
some v ∈ V . And injectivity is not much harder: if ψ(v1 + ker f) = ψ(v2 + ker f) then fv1 = fv2,
whence f(v1 − v2) = 0, which yields that v1 − v2 ∈ ker f , and hence v1 + ker f = v2 + ker f .
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Indecomposable and irreducible modules

Recall that a vector space V is said to be the internal direct sum of its subspaces X and Y if every
element of V is uniquely expressible in the form x+ y with x ∈ X and y ∈ Y . We call this a direct
decomposition of V , and we write V = X ⊕ Y . We also say that X and Y are complementary
subspaces of V . It is easily seen that if V = X ⊕ Y then V/X ∼= Y , an isomorphism Y → V/X
being given by y 7→ y +X for all y ∈ Y . (The symbol “∼=” means “is isomorphic to”.)

In terms of bases, a direct decomposition of a vector space amounts to splitting a basis into
two pieces; thus if V = X ⊕ Y then if x1, x2, . . . , xn is a basis for X and y1, y2, . . . , ym a basis
of Y then x1, . . . , xn, y1, . . . , ym is a basis of V . It is a basic theorem of vector space theory that
a basis of a subspace can always be extended to a basis of V . Thus if X is a subspace of V and
x1, x2, . . . , xn is a basis of X then there exist xn+1, xn+2, . . . , xd such that x1, x2, . . . , xd is a
basis of V . The subspace Y of V that is spanned by xn+1, xn+2, . . . , xd is then complementary
to X, and we obtain the important fact that for every subspace X of a vector space V there is
subspace Y of V such that V = X⊕Y . Indeed, there are usually many subspaces Y complementing
a given X.

The direct decomposition concept generalizes easily to G-modules. A G-module V is the G-
module direct sum of X and Y if X and Y are G-submodules of V and V = X⊕Y as vector spaces.
If V = X ⊕ Y (where X and Y are G-submodules) then Y ∼=G V/X, where we have attached a
subscript G to the isomorphism sign to indicate that this is a G-isomorphism (an isomorphism of
G-modules). As before, the mapping ψ from Y to V/X given by ψy = y+X is an isomorphism. We
already know that it is a vector space isomorphism, and so we only need to check that it respects
the G action. This is immediate from the definition of the action of G on X/Y : for all y ∈ Y and
g ∈ G,

ψ(gy) = gy +X = g(y +X) = g(ψy).

However, it is not at all clear that for every G-submodule X of a G-module V there is a complemen-
tary submodule. Since a submodule is a fortiori a vector subspace, there will be a complementary
subspace, but among all such complements is there one which is G-invariant? (Note that vetor
subspace of a G-module is said to be G-invariant if and only if it is closed under the G-action; thus
a G-invariant subspace of V is the same thing as a G-submodule of V .)

It is not true in general that for every group G and every G-module V , every G-invariant
subspace has a G-invariant complement. For example, consider the group G consisting of all 2× 2

matrices over F of the form
(

1 λ
0 1

)
, where λ is arbitrary. In fact G is isomorphic to the additive

group of F via the mapping φ:λ 7→
(

1 λ
0 1

)
: this mapping is clearly bijective, and

φ(λ+ µ) =
(

1 λ+ µ
0 1

)
=
(

1 λ
0 1

)(
1 µ
0 1

)
= (φλ)(φµ).

But what is more to the point at present is that the space V of all two-component column vectors
is a G-module which has only one proper submodule, namely the subspace X consisting of all two-
component vectors whose second component is 0. For suppose that U is another nonzero submodule

of V . Then U contains a nonzero column vector
(
x
y

)
. Since U is closed under that action of G

we deduce that (
x+ λy
y

)
=
(

1 λ
0 1

)(
x
y

)
∈ U
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for all λ ∈ F , and by closure of U under subtraction(
λy
0

)
=
(
x+ λy
y

)
−
(
x
y

)
∈ U

for all λ ∈ F . In particular, if y 6= 0 then by taking λ = y−1 we deduce that U contains
(

1
0

)
,

and hence (by closure under scalar multiplication) all vectors whose second component is 0. On

the other hand, if y = 0 then x must be nonzero (since we assumed that
(
x
y

)
is nonzero), and

the same conclusion follows since now the scalar multiples of
(
x
y

)
give all vectors which are zero

in the second component. So the submodule U contains X (which is already enough to show that
U cannot be a complement to X). If U is not equal to X then it must contain some vector which

is nonzero in the seond component, and since this vector together with
(

1
0

)
(which is in X and

hence in U) span V it follows that U equals the whole of V .

Definition. (i) A G-module V is said to be indecomposable if it cannot be expressed as a direct
sum of two nonzero submodules.

(ii) A G-module V is said to be irreducible if it has no submodules other than itself and the zero
submodule.

We have given above an example of a module V which is indecomposable but not irreducible.
As a vector space V is two-dimensional, and it has a submodule which was one-dimensional as a
vector space; this shows that V is not irreducible. But since V has no other nontrivial submodules
it cannot be expressed as a direct sum of two nontrivial submodules; hence it is indecomposable.
The first main result of representation theory that we intend to prove is the famous theorem of
Maschke which asserts that if the group G is finite and the order of G is nonzero as an element
of F then every indecomposable G-module is irreducible.*

* How could the order of G be zero in F? The point is that some fields satisfy unusual equations
like 1+1 = 0 or 1+1+1 = 0. So it may be that a nonzero integer n becomes zero when interpreted
as an element of F . If this happens then the least such positive integer is called the characteristic
of F . The hypothesis of Maschke’s theorem can thus be rephrased as follows: G must be finite
and the characteristic of F should not be a divisor of |G|. So, for example, if we took G to be the
group S3 of order 6, and F to be the integers modulo 3, then 1 + 1 + 1 = 0, whence 6 = 0 in F ,
and Maschke’s theorem would not apply.
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