
Group representation theory Lecture 7, 18/8/97

From now on, unless otherwise stated, the scalar field for each vector space we deal with will be C,
the complex field. And all the vector spaces will be finite dimensional.

Maschke’s Theorem. Let G be a finite group, V a G-module and U a G-submodule of V . Then
there is a submodule W of V such that V = U ⊕W .

In accordance with the definition of “irreducible” given in Lecture 6, a module is said to be
reducible if it has a nonzero proper submodule. A module is said to be completely reducible if for
every submodule there is a complementary submodule. Maschke’s Theorem says that every module
for a finite group |G| (over a field such that |G| 6= 0) is completely reducible, and so the theorem
is also known as the Theorem of Complete Reducibility.

If you have worked completely through the exercises in Tutorial 1 then you have already proved
Maschke’s Theorem. That proof goes as follows.

The first step is to note that it is possible to define an inner product on the space V . That is,
there exists a function (u, v) 7→ u · v from V × V to C such that

(i) u · (λv + µw) = λ(u · v) + µ(u · w) for all u, v, w ∈ V and λ, µ ∈ C,

(ii) u · v = v · u for all u, v ∈ V (where the overline indicates complex conjugation),

(iii) u · u is real and positive for all nonzero u ∈ V (and is 0 if v = 0).

Indeed, if v1, v2, . . . , vn is any basis of V then there exists an inner product such that vi · vj = δij
for all i and j. Explicitly, if u =

∑
i λivi and v =

∑
i µivi then u · v =

∑
i λiµi.

Fix an inner product (u, v) 7→ u · v on V , and define another function V × V → C by the
formula u∗v =

∑
x∈G xu ·xv. It is easy to show that properties (i), (ii) and (iii) above are satisfied,

so that ∗ is also an inner product. Moreover, it is G-invariant, in the sense that gu ∗ gv = u ∗ v for
all u, v ∈ V and all g ∈ G, since

gu ∗ gv =
∑
x∈G

x(gu) · x(gv) =
∑
x∈G

(xg)u · (xg)v =
∑
y∈G

yu · yv = u ∗ v

(where we have used the fact that as x runs through all the elements of G then so too does y = xg,
as x 7→ xg is a bijection G→ G). We now define W to be the orthogonal complement of U relative
to this new inner product: W = U⊥ = { v ∈ V | u ∗ v = 0 for all u ∈ U }. Then V = U ⊕W . (It
is a general property of inner product spaces that if U is any subspace then the whole space is the
direct sum U ⊕ U⊥.) We only have to show that W is a G-submodule of V , and since we already
know that it is a subspace we only have to show that if w ∈W and g ∈ G then gw ∈W . But this
is easy: if u ∈ U then u ∗ gw = g−1u ∗w = 0 since w ∈ U⊥ and g−1u ∈ U (since U is a G-module);
hence gw ∈ U⊥ (since u ∗ gw = 0 for all u ∈ U).

The key idea in this proof is to create a G-invariant object—in this case an inner product—by
summing the G-transforms of an arbitrary object. This is a theme that will recur at several points
in this course. Often as well as summing over G we divide by |G|, so that the process can be
regarded as an averaging of the effects of the elements of G. We will now give a second proof of
Maschke’s Theorem; this proof can be applied unchanged if the complex field is replaced by any
field in which |G| 6= 0. The key averaging idea remains.

Given the G-module V and submodule U , choose an arbitrary vector subspace Z of V that is
complementary to U . Thus as a vector space V = U ⊕Z, but this will not generally be a G-module
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decomposition. Now for each z ∈ Z and g ∈ G the element gz ∈ V can be split uniquely into a
component in U and a component in Z; so we can write

gz = τgz + σgz (1)

where τg:Z → U and σg:Z → Z are linear maps. Note that taking g = 1 gives gz = z; hence
τ1z = 0 and σ1z = z.

Let h ∈ G and apply h to both sides of Eq. (1), and compare the result with the equation
obtained by replacing g by hg in Eq. (1):

τhgz + σhgz = (hg)z = h(gz)
= h(τgz + σgz)
= h(τgz) + h(σgz)
= h(τgz) + (τh(σgz) + σh(σgz))

(2)

where in the last step we have applied Eq. (1) with g replace by h and z by σgz. Since τgz ∈ U
and U is a G-submodule it follows that h(τgz) ∈ U , and so comparing the U and Z components of
the first and last expressions in Eqq. (2) gives

τhgz = h(τgz) + τh(σgz) (3)

as well as σhgz = σh(σgz). Note that taking h = g−1 here yields that σ(g−1) = σ−1
g , since σ1 = id,

and if we now replace z by σ−1
g z = σ−1

hg (σhz) in Eq. (3) we obtain

τhg(σ−1
hg (σhz)) = h(τg(σ−1

g z)) + τhz. (4)

It is Eq. (4) to which we apply the averaging idea: summing it over all g ∈ G gives∑
g∈G

τhg(σ−1
hg (σhz)) = h

(∑
g∈G

τg(σ−1
g z)

)
+ |G|τhz,

and now dividing by |G| gives
η(σhz) = h(ηz) + τhz, (5)

where we have defined η:Z → U by

ηz =
1
|G|

∑
g∈G

τg(σ−1
g z).

(The crucial point is that if h ∈ G is fixed then ηz′ = 1
|G|
∑
g∈G τhg(σ

−1
hg z

′) for all z′ ∈ Z, since hg
runs through all elements of G as g does.)

Let W = { z + ηz | z ∈ Z }, and let w ∈W be arbitrary. Choose z ∈ Z such that w = z + ηz.
Then for all h ∈ G,

hw = hz + h(ηz) = hz + (η(σhz)− τhz)

(by Eq. (5)), and now using Eq. (1) we deduce that

hw = σhz + η(σhz) ∈W.
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Since this holds for all w ∈W and h ∈ G we have shown that W is closed under the G-action. It is
also a vector subspace of V since it is the image of the linear map z 7→ z + ηz from Z to V . Thus
W is a G submodule of V . If v ∈ V then, for some u ∈ U and z ∈ Z,

v = u+ z = (u− ηz) + (z + ηz) ∈ U +W,

since ηz ∈ U and z + ηz ∈W . Furthermore, U ∩W = {0}, since if u ∈ U and u = z + ηz for some
z ∈ Z then

z = u− ηz ∈ U ∩ Z = {0},

showing that z = 0 and hence u = 0. Thus the submodule W is complementary to U , as required.

As always in this subject, it is possible to rephrase proofs using matrices rather than linear
transformations. Sometimes results become easier to understand this way, and sometimes harder.
And often different people disagree about which is easier. So let us anyway go through the above
proof in matrix terms. We start by choosing a basis v1, v2, . . . , vn for the submodule U of V , and
then extending this to a basis v1, v2, . . . , vn+m of V . For g ∈ G let Qg be the (n+m)× (n+m)
matrix whose (i, j)-entry Qijg is defined by

gvj =
n+m∑
i=1

(Qijg)vi.

That is, Qg is the matrix of the transformation v 7→ gv relative to our chosen basis. Observe
that if 1 ≤ j ≤ n then vj ∈ U and so gvj ∈ U , and it follows that gvj is a linear combination of
v1, v2, . . . , vn. Thus the coefficients Qijg are zero for n + 1 ≤ i ≤ n + m and 1 ≤ j ≤ n. So we
have a block decomposition of the matrix Qg as

Qg =
(
Rg Tg
0 Sg

)
for all g ∈ G (8)

where Rg and Sg are respectively n×n and m×m matrices, and Tg is n×m. This can be viewed
as the matrix version of reducibility; more precisely, a matrix representation of G is reducible if it
is equivalent to a matrix representation having a block structure as in Eq. (8). If the subspace of
V spanned by vn+1, vn+2, . . . , vm were a G-submodule then gvn+j would be a linear combination
of vn+1, vn+2, . . . , vm, and the coefficients Qijg would be zero for i ≤ n and j ≥ n; the matrix Tg
would be 0 for all g. Thus a matrix representation is decomposable if it is equivalent to one of the

form g 7→
(
Rg 0
0 Sg

)
, and the matrix form of Maschke’s Theorem is that a representation of the

form given by Eq. (8) is equivalent to a representation of the same form with all the Tg’s zero.

Since Rg has (i, j)-entry Qijg for i, j ∈ {1, 2, . . . , n} we see that Rg is the matrix relative to
v1, v2, . . . , vn of the transformation u 7→ gu of U . Note also that vn+1 +U, vn+2 +U, . . . , vn+m+U
is a basis for the quotient module V/U , and since

g(vn+j + U) =
(n+m∑
i=1

(Qi,n+jg)vi
)

+ U =
m∑
i=1

(Qn+i,n+jg)(vn+i + U),

and Qn+i,n+jg is the (i, j)-entry of Sg, we see that Sg is the matrix of v + U 7→ g(v + U) relative
to the above basis of V/U .
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Since g 7→ Qg is a matrix representation of G, Eq. (8) gives(
R(hg) T (hg)

0 S(hg)

)
= Q(hg) = (Qg)(Qh) =

(
Rh Th
0 Sh

)(
Rg Tg
0 Sg

)
=
(

(Rh)(Rg) (Rh)(Tg) + (Th)(Sg)
0 (Sh)(Sg)

)
,

which confirms the formulas R(hg) = (Rh)(Rg) and S(hg) = (Sh)(Sg) (which we already knew
since R and S are matrix versions of the representations of G on U and V/U), and also enables us to
deduce that T (hg) = (Rh)(Tg)+(Th)(Sg). Hence, on right multiplying by (Sg)−1 = S(hg)−1(Sh),

(T (hg)S(hg))−1(Sh) = (Rh)((Tg)(Sg)−1) + Th, (9)

whch is the matrix analogue of Eq. (4). Averaging over g ∈ G this gives

E(Sh) = (Rh)E + Th for all h ∈ G,

where we have defined E = 1
|G|
∑
g∈G(Tg)(Sg)−1. Hence we derive the following matrix equation:(

Rh Th
0 Sh

)(
I E
0 I

)
=
(
I E
0 I

)(
Rh 0
0 Sh

)
for all h ∈ G.

Equivalently (
I E
0 I

)−1(
Rh Th
0 Sh

)(
I E
0 I

)
=
(
Rh 0
0 Sh

)
for all h ∈ G,

so that the representation Q is equivalent to the diagonal sum of the representations R and S, as
required.

Lecture 8, 20/8/97

Having done Maschke’s Theorem, let us proceed at once to the other main theorem of this course:
Schur’s Lemma. Calling it a lemma, as is traditional, belies its importance. But as befits a lemma,
its proof is easy.

Schur’s Lemma (Version 1). Let U and V be irreducible G-modules and φ:U → V a G-
homomorphism. Then φ is either a G-isomorphism or the zero map.

Proof. By part of the First Isomorphism Theorem, kerφ is a G-submodule of U . But U is irre-
ducible, and so has no nontrivial proper submodules. Thus either kerφ = U or kerφ = {0}. If
kerφ = U then φ is the zero map, which is one of the possibilities allowed in the statement of the
theorem. In the alternative case φ is injective, since kerφ = {0}. Now another part of The First
Isomorphism Theorem tells us that imφ is a submodule of V , and so irreducibility of V tells us
that imφ is either {0} or V . If it is {0} then again φ must be the zero map, and since we have
already excluded this case we deduce that imφ = V . So φ is surjective as well as injective, and
thus it is an isomorphism, as required.* �

* It has just occurred to me that the definition of “irreducible” should have incorporated the
assumption that an irreducible module has to be nonzero. We shall assume this henceforth.
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So it would seem that Schur’s Lemma is no big deal. Yet we will spend quite some time deriving
consequences and reformulations of the result, many of which are quite striking. The truth is that
the assumption of irreducibility is very strong. Thus irreducible modules are rather special objects,
and, as we shall see, they have some striking properties.

First, we should derive the matrix form of the above statement:

Schur’s Lemma (Version 2). Let R:G→ GL(n, F ) and S:G→ GL(m,F ) be irreducible matrix
representations of G, and let X be an n×m matrix which intertwines R and S. Then either X = 0
or X is invertible.

This follows immediately from Version 1, in view of our discussion of G-homomorphisms and
intertwining matrices in Lecture 5. Note that, of course, the case X invertible can only arise
if n = m (which in module terms says that if U and V are isomorphic they have the same dimension
over F ).

It should be noted that everything that has been said so far is totally general. Our assumption
that F = C can be dispensed with, the group G does not have to be finite and the modules U and
V do not have to be finite-dimensional over F . We have used only the First Isomorphism Theorem
(and indeed only special cases of that) and the definition of irreducibility. For the next result,
though, we do make use of the assumption that the field is C.

Schur’s Lemma (Version 3). Let R:G→ GL(d,C) be an irreducible matrix representation of G,
and suppose X is a d× d matrix such that (Rg)X = X(Rg) for all g ∈ G. Then X = λI for some
λ ∈ C.

Proof. Choose λ to be an eigenvalue of X. Because the ground field is C, and every nonconstant
polynomial with coefficients in C has a root in C, the characteristic polynomial of X does have at
least one root λ ∈ C, and so a suitable λ certainly exists. By definition, det(X − λI) = 0, and the
matrix X − λI is not invertible. Now for all g ∈ G,

(X − λI)(Rg) = X(Rg)− λ(Rg) = (Rg)X − λ(Rg) = (Rg)(X − λI),

since X commutes with every Rg. Thus X − λI commutes with every Rg, and by Version 2 above
it follows that X − λI is invertible or zero. By the choice of λ it is not invertible; so X = λI, as
required. �

The module version of this statement is that if V is a finite-dimensional irreducible G-module
over C and φ:V → V is a G-homomorphism then φ is a scalar multiple of the identity map. The
assumption here that V is finite-dimensional is necessary since infinite-dimensional vector spaces
do admit linear operators which have no eigenvalues.

It will not have escaped the attention of the alert reader that, in our third form of Schur’s
Lemma, C could be replaced by any algebraically closed field.

Orthogonality relations

A little scepticism is a healthy thing, and it would be natural at this stage to be a little
sceptical about the usefulness of Schur’s Lemma. After all, it can only be applied if one has a
G-homomorphism or intertwining matrix for a pair of irreducible representations. And homomor-
phisms are very special things: they may not be easy to find. Fortunately, the averaging argument
used in the proof of Maschke’s Theorem affords (for finite groups) a general method of constructing
them.
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Lemma. Let G be a finite group, and let R, S be matrix representations of G of degrees n and m
respectively. If X is any n×m matrix then Y =

∑
g∈G(Rg)X(S(g−1)) intertwines R and S.

Proof. For all h ∈ G,

(Rh)Y =
∑
g∈G

(Rh)(Rg)X(S(g−1)) =
∑
g∈G

(R(hg))X(S(g−1))(S(h−1))(Sh)

=
(∑
g∈G

(R(hg))X(S(g−1h−1)
)

(Sh) =
(∑
k∈G

(Rk)X(S(k−1)
)

(Sh) = Y (Sh)

since k = hg runs through all elements of G as g does. �

Suppose now that R(1), R(2), . . . , R(s) are irreducible matrix representations of the finite
group G, of degrees d1, d2, . . . , ds respectively. Assume furthermore that R(k) and R(l) are not
equivalent if k 6= l. Write R(k)

ij g for the (i, j)-entry of R(k)g.
Choose k and l arbitrarily from the set {1, 2, . . . , s}, and for 1 ≤ m ≤ dk and 1 ≤ n ≤ dl let

X
(k,l)
m,n be the dk × dl matrix whose (t, u)-entry is 0 unless t = m and u = n, in which case it is 1.

In other words, the (t, u)-entry of X(k,l)
m,n is δtmδun. The lemma above tells us that the matrix

Y (k,l)
m,n =

1
|G|

∑
g∈G

(R(k)g)X(k,l)
m,n (R(l)(g−1))

intertwines R(k) and R(l). Hence, by Schur’s Lemma, Y (k,l)
m,n is zero if k 6= l (since the two rep-

resentations are inequivalent in this case), while Y (k,k)
m,n must be a scalar multiple of I. Thus the

(p, q)-entry of Y (k,l)
m,n is λ(k,m, n)δpqδkl for some λ(k,m, n) ∈ C.

Computing the (p, q)-entry of Y (k,l)
m,n directly from the definition we find that

λ(k,m, n)δpqδkl =
1
|G|

∑
g∈G

( dk∑
t=1

dl∑
u=1

(R(k)
pt g)δtmδun(R(l)

uq(g
−1))

)
=

1
|G|

∑
g∈G

(R(k)
pmg)(R(l)

nq(g
−1)).

Considering the (n,m)-entry of Y (l,k)
q,p yields by the same calculation (or by renaming the variables

above) that

λ(l, q, p)δnmδkl =
1
|G|

∑
g∈G

(R(l)
nqg)(R(k)

pm(g−1))

=
1
|G|

∑
g∈G

(R(l)
nq(g

−1))(R(k)
pmg)

where in the last step we have simply changed the dummy variable of summation from g to g−1.
But the right hand sides of the last two displayed formulas are equal, and so we conclude that for
all values of k, l, m, n, p and q,

λ(k,m, n)δpqδkl = λ(l, q, p)δnmδkl.

Putting q = p and l = k shows that λ(k,m, n) = λ(k, p, p)δnm, and now putting m = n shows that
λ(k, n, n) = λ(k, p, p) = µk depends only k and not on p or n. So λ(k,m, n) = µkδnm.
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