
Group representation theory Lecture 9, 25/8/97

The calculation from last lecture showed that

1
|G|

∑
g∈G

(R(k)
pmg)(R(l)

nq(g
−1)) = µkδnmδpqδkl (1)

where the R(i) are irreducible matrix representations of G, no two of which are equivalent. Note
that k, l, m, n, p and q are free variables: the equation is valid for all their possible values. We
can thus calculate the values of the scalars µk as follows. Put l = k and m = n, and sum Eq. (1)
over all values of n from 1 to dk (the degree of R(k). After interchanging the order of summation
on the left hand side we obtain

1
|G|

∑
g∈G

dk∑
n=1

(R(k)
pn g)(R(k)

nq (g−1)) =
dk∑
n=1

µkδpq = µkdkδpq.

But since (R(k)g)(R(k)(g−1)) = R(k)(gg−1) = R(k)1 = I (for all values of g) we know that

dk∑
n=1

(R(k)
pn g)(R(k)

nq (g−1)) = Ipq = δpq,

and our equation above reduces to

1
|G|

∑
g∈G

δpq = µkdkδpq.

So µk = d−1
k , and Eq. (1) becomes

1
|G|

∑
g∈G

(R(k)
pmg)(R(l)

nq(g
−1)) = d−1

k δnmδpqδkl (2)

This basic result is known as the orthogonality of coordinate functions.
It was shown in Tutorial 1 that each matrix representation of a finite group is equivalent to a

unitary representation, which by definition is a representation R such that Rg is a unitary matrix
for each g ∈ G. (Recall that a matrix M is said to be unitary if its conjugate transpose is equal to
its inverse; that is,

(
M

t)
M = I. In the case that the entries of M are real numbers this condition

becomes (M t)M = I, and the matrix is said to be orthogonal.) Let us review this proof before
continuing.

Given a matrix representation R:G→ GL(d,C) we can make the complex vector space V = C
d

(consisting of all d-component column vectors) into a left G-module by defining

gv = (Rg)v (for all g ∈ G and v ∈ V ).

The space V is of course an inner product space relative to the standard inner product, or dot
product 

λ1

λ2
...
λd

 ·

µ1

µ2
...
µd

 = λ1µ1λ2µ2 · · ·λdµd,
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and as in our first proof of Maschke’s Theorem we can obtain a G-invariant inner product on V by
defining

v ∗ u =
∑
g∈G

(gv) · (gu) (for all g ∈ G and v, u ∈ V ).

Now choose a basis v1, v2, . . . , vd of V which is orthonormal relative to this new inner product,
and let S be the matrix representation of G which this new basis of V yields. That is,

gvj =
d∑
i=1

(Sg)ijvi

for all g ∈ G and j ∈ {1, 2, . . . , d}. The representation S is then equivalent to the representation R;
indeed, Sg = T−1(Rg)T (for all g ∈ G), where T is the transition matrix for changing coordinates
relative to v1, v2, . . . , vd into standard coordinates. Specifically, the j-th column of T is simply the
column vector vj . Furthermore, S is a unitary representation. To see this, note that G-invariance
of ∗ yields (by definition) that (gv) ∗ (gu) = v ∗ u for all v, u ∈ V , and now since the basis
v1, v2, . . . , vd is orthonormal

δjk = vj ∗ vk = (gvj) ∗ (gvk) =
( d∑
i=1

(Sg)ijvi
)
∗
( d∑
m=1

(Sg)mkvm
)

=
d∑
i=1

d∑
m=1

(Sg)ij(Sg)mk(vi ∗ vm)

=
d∑
i=1

d∑
m=1

(Sg)ij(Sg)mkδim =
d∑
i=1

(Sg)ij(Sg)ik =
d∑
i=1

(
Sg

t)
ji

(Sg)ik

for all j and k and all g ∈ G. This shows that
(
Sg

t)
Sg = I for all g ∈ G, as required.

Returning to Eq. (2), let us now suppose that all the representations R(i) are unitary. Then
for all g ∈ G and all l,

R(l)(g−1) = (R(l)g)−1 = R(l)g
t
,

and so R(l)
nq(g−1) = R

(l)
qng. Hence Eq. (2) becomes

1
|G|

∑
g∈G

(R(k)
pmg)

(
R

(l)
qng
)

= d−1
k δnmδpqδkl. (3)

Tabulating the values of the function R
(k)
pm:G → C gives a row vector—let us temporarily call it

xkpm—which has one entry for each element of G. Equation (3) tells us that the standard dot
product of xkpm and xlqn is zero unless k, p and m are (repectively) equal to l, q and n, in which
case the dot product is |G|/dk. For each value of k there are d2

k possibilities for the ordered pair
(p,m) (since p, m ∈ {1, 2, . . . , dk}), and so we have

∑s
k=1 d

2
k vectors xkpm altogether. These vectors

are linearly independent since they are nonzero and pairwise orthogonal, and so they span a space
of dimension

∑s
k=1 d

2
k. As they are contained in the |G|-dimensional space of row vectors with |G|

components, we conclude that
s∑

k=1

d2
k ≤ |G| (4)

whenever G has mutually inequivalent representations of degrees d1, d2, . . . , ds. Thus s ≤ |G|,
since each dk is at least 1, and this shows that no group G can have more than |G| mutually
inequivalent irreducible representations. In particular, up to equivalence the number of irreducible
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complex representations of a finite group is finite. (In fact, as we shall show in a few lectures’ time,
equality always holds in (4).)

Let us illustrate the above result for the group G = S3. We know three irreducible mutually
inequivalent representations, of degrees 1, 1 and 2. The sum of the squares of these degrees is 6,
which equals the order of S3; so, in view of the inequality (4), there can be no fourth irreducible
representation which is not equivalent to one of the these three. Representations of degree 1 are
necessarily unitary (for a finite group), since on the one hand the representation has to be equivalent
to a unitary representation (see above), and on the other hand a representation of degree 1 cannot
be equivalent to anything but itself since 1×1 matrices commute. If we identify S3 with the group of
symmetries of an equilateral triangle, and coordinatize the Euclidean plane by taking the centroid
of the triangle as the origin and the line through the origin and one of the vertices as the x-axis,
then we obtain a representation of S3 by real orthogonal matrices. It is now a straightforward
matter to compute the values of the coordinate functions of our three irreducible representations,
and obtain the following table.

g id (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2)

R
(1)
11 g 1 1 1 1 1 1

R
(2)
11 g 1 −1 −1 −1 1 1

R
(3)
11 g 1 −1/2 −1/2 1 −1/2 −1/2

R
(3)
12 g 0

√
3/2 −

√
3/2 0 −

√
3/2

√
3/2

R
(3)
21 g 0

√
3/2 −

√
3/2 0

√
3/2 −

√
3/2

R
(3)
22 g 1 1/2 1/2 −1 −1/2 −1/2

Here, for example, the last four entries of the second column say that the matrix R(3)(1, 2)

is
(
−1/2

√
3/2√

3/2 1/2

)
, which is the matrix of the reflection in the line through the origin with

slope tan(π/3). (The vertices 1, 2 and 3 of the triangle are, respectively, the points with coor-

dinates
(
x
y

)
given by

(
1
0

)
,
(
−1/2√

3/2

)
and

(
−1/2
−
√

3/2

)
respectively.

Interpreting the values in the table above as the entries of a 6× 6 matrix, we can check easily
that the dot product of two distinct rows of the matrix is 0, while the dot product of a row with
itself is six (for the first two rows) or three (for the last four rows). In general, Eq. (2) says that
the table of values of the coordinate functions is a matrix whose rows are mutually orthogonal, the
length of each row being given by

√
d/|G|, where d is is the degree of the relevant representation.

Dvividing each row by its length yields a matrix T (G) whose rows form an orthonormal set of
vectors; the rows of T (G) are indexed by triples { (k, p,m) | 1 ≤ k ≤ s and p, m ∈ {1, 2, . . . , dk} }
and the columns by elements of G, the ((k, p,m), g)-entry being

√
d/|G|R(k)

p,mg. For S3 we find that

T (S3) =


1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6
1/
√

6 −1/
√

6 −1/
√

6 −1/
√

6 1/
√

6 1/
√

6
1/
√

3 −1/2
√

3 −1/2
√

3 1/
√

3 −1/2
√

3 −1/2
√

3
0 1/2 −1/2 0 −1/2 1/2
0 1/2 −1/2 0 1/2 −1/2

1/
√

3 1/2
√

3 1/2
√

3 −1/
√

3 −1/2
√

3 −1/2
√

3

 ,

which is unitary—orthogonal, in fact, since it is real—as one can easily check.
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A square matrix M is unitary if and only if its columns form an orthonormal set of vectors,
since this condition is clearly equivalent to the matrix equation (M

t
)M = I. Since this in turn is

equivalent to M(M
t
) = I, which says that the rows form an orthonormal set, we conclude that the

rows of a square matrix are orthonormal if and only if the columns are too. Given that equality
holds in (4), so that T (G) is square, column orthogonality tells us that for all g, h ∈ G

1
|G|

∑
k,p,m

dk
(
R

(k)
pmg

)
(R(k)

pmh) = δgh.

(This is equivalent to Eq. (2), but much less important in practice.)

Lecture 10, 27/8/97

The regular representation

If a group G has a left action on a set S then associated with each g ∈ G is a permutation σg:S → S
defined by σgs = gs for all s ∈ S. Furthermore, g 7→ σg is a homomorphism from G to the group
of all permutations of S. We have also seen that permutations can be associated with permutation
matrices. If S = {s1, s2, . . . , sd} we thus obtain a homomorphism g 7→ Rg from G to the group of all
d× d permutation matrices, where the (i, j)-entry of Rg is 1 if vi = gvj and 0 otherwise.* In other
words, a permutation representation becomes a matrix representation if one identifies permutations
with permutation matrices. (The G-module associated with this matrix representation is a vector
space with basis in bijective correspondence with the elements of S, the elements of G acting via
linear transformations which permute this basis.)

If we consider in particular the left multiplication action of the group G on itself then we
obtain a representation of G by |G| × |G| permutation matrices. The precise matrices depend on a
chosen ordering of the elements of G. Let us illustrate what happens for the group S3, using the
same ordering of the elements as we used in the multiplication table given in Lecture 1:

g1 = id, g2 = (1 2 3), g3 = (1 3 2), g4 = (1 2), g5 = (1 3), g6 = (2 3).

Left multiplication by (1 2) swaps g1 and g4 (since (1 2)id = (1 2) and (1 2)(1 2) = id), and also
swaps the pairs g2, g6 and g3, g5. The matrix representing (1 2) thus comes out to be

R(1 2) =


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 .

Similarly

R(2 3) =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 , R(1, 2, 3) =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 .

* In the case of a right action of G on S the permutation matrix associated with g ∈ G should
have (i, j)-entry 1 if vig = vj and 0 otherwise, to ensure that R(gh) equals (Rg)(Rh) rather than
(Rh)(Rg).
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The others are equally easy to calculate.
The representation R:G → GL(|G|,C) constructed in this way is called the regular represen-

tation of G. In view of Maschke’s Theorem it is possible to find a matrix T—rather, I should say
there exists a matrix T , since it not clear how to find one—such that

T−1(Rg)T =


S1g 0 0 · · · 0
0 S2g 0 · · · 0
0 0 S3g · · · 0
...

...
...

...
0 0 0 · · · Smg

 (1)

where S1, S2, . . . , Sm are some irreducible representations of G. Note that the order in which the
irreducibles Si occur as diagonal summands can be varied by altering the matrix T . For example,
S1 and S2 can be interchanged since

0 I · · · 0
I 0 · · · 0
...

...
...

0 0 · · · I



S1g 0 · · · 0
0 S2g · · · 0
...

...
...

0 0 · · · Smg




0 I · · · 0
I 0 · · · 0
...

...
...

0 0 · · · I

 =


S2g 0 · · · 0
0 S1g · · · 0
...

...
...

0 0 · · · Smg


and clearly a sequence of similar such operations can produce any desired ordering of the diagonal
summands. Furthermore, each Si can be replaced by any representation to which it is equivalent:
for example, if S′1g = X−1(S1g)X then

X 0 · · · 0
0 I · · · 0
...

...
...

0 0 · · · I


−1

S1g 0 · · · 0
0 S2g · · · 0
...

...
...

0 0 · · · Smg



X 0 · · · 0
0 I · · · 0
...

...
...

0 0 · · · I

 =


S′1g 0 · · · 0
0 S2g · · · 0
...

...
...

0 0 · · · Smg


for all g ∈ G. So if we choose irreducible representations R(1), R(2), . . . , R(s) such that every
irreducible representation of G is equivalent to one of the R(k), then we may assume that each Sj
in Eq. (1) above coincides with some R(k). Of course, a given R(k) could conceivably occur several
times. So that we can apply the formulas from Lecture 9, we shall assume that the R(k) are unitary
and mutually inequivalent. As we shall soon see, it turns out that each R(k) occurs dk times as a
diagonal summand in Eq. (1). This means that the degree of the representation on the right hand
side in Eq.(1) is

∑
k d

2
k (since for each k there are dk summands of degree dk). As has already been

mentioned, this equals |G|, which is the degree of the representation on the left hand side of Eq. (1).

The coordinate space of a representation

In this course Cn usually means the vector space of n-component column vectors over C. Other
authors often define it to be the space of row vectors. A third alternative would be to identify
C
n with the space of all complex valued functions on the set {1, 2, . . . , n}. Indeed, a function

f : {1, 2, . . . , n} → C is nothing other than an n-tuple of values: f can be identified with the n-
component vector whose ith component is fi. The moral of this story is simply that the set of all
complex valued functions on an n-element set S is a vector space of dimension n. Addition and
scalar multiplication are defined by the formulas (f + g)s = (fs) + (gs) and (λf)s = λ(fs).

Let VG be the |G|-dimensional space of all complex valued functions on G. The coordinate
space of a matrix representation S:G → GL(d,C) is the subspace of VG which is spanned by the
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coordinate functions of S. That is, for all i, j ∈ {1, 2, . . . , d} define Sij :G→ C, so that Sijg is the
(i, j) entry of Sg; the coordinate space is then the space spanned by all the functions Sij .

Proposition. Equivalent representations have the same coordinate space.

Proof. Let R and S be equivalent matrix representations of G ofdegree d, so that there exists an
invertible d×d matrix T such that T−1(Rg)T = Sg for all g ∈ G. Let Rij and Sij be the coordinate
functions of R and S, and denote the (i, j) entries of T and T−1 by Tij and Uij respectively. Then
for all g ∈ G we have that

Sijg =
d∑
k=1

d∑
l=1

Uik(Rklg)Tlj

whence it follows that
Sij =

∑
k,l

(UikTlj)Rkl

for all i, j ∈ {1, 2, . . . , d}. Since this expresses each coordinate function of S as a linear combination
of the coordinate functions of R, it follows that the coordinate functions of S are all contained in
the coordinate space of R, and hence the coordinate space of S is contained in the coordinate space
of R. But equivalence of representations is a symmetric relation, and so the same argument shows
that the coordinate space of R is contained in that of S. �

Note also the following result, which is fairly trivial.

Proposition. The coordinate space of the diagonal sum of two representations R and S is the
vector space sum of the coordinate spaces of R and S.

Proof. Let m be the degree of R and n the degree of S, and let T be the diagonal sum, given by

Tg =
(
Rg 0
0 Sg

)
for all g ∈ G. Denote the coordinate functions of R by Rij , and denote those of S and T similarly.
For i, j ∈ {1, 2, . . . ,m} we see that Tij = Rij , while for i, j ∈ {m + 1,m + 2, . . . ,m + n} we have
Tij = Si−m,j−m. Furthermore, all other coordinate functions of T are zero. So an arbitrary element∑
i,j λijTij of the coordinate space of T can be expressed as∑

i≤m, j≤m

λijRij +
∑

i>m, j>m

λijSi−m,j−m,

which is in the sum of the coordinate spaces of R and S. �

By Maschke’s Theorem we know that every complex representation of a finite group is equiva-
lent to a diagonal sum of irreducible representations. So if, as above, we fix a full set of irreducible
representations* R(1), R(2), . . . , R(s) then the coordinate space of an arbitrary representation is
contained in the sum of the coordinate spaces of the R(k). We shall now prove a result which,
though easy, is crucial for our cause.

Proposition. The coordinate space of the regular representation equals VG, the space of all com-
plex valued functions on G.

* That is, one from each equivalence class of irreducibles
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Proof. The coordinate space of the regular representation is of course contained in VG; so we have
only to prove the reverse inclusion.

Let g1, g2, . . . , gn be the elements of G, so that in particular the degree of the regular repre-
sentation is n, and let g ∈ G be arbitrary. We can choose i, j ∈ {1, 2, . . . , n} such that gi = ggj :
for example, choose j so that gj is the identity element and i so that gi = g. Now the coordinate
function Rij of the regular representation R satisfies, for all h ∈ G,

Rijh =
{

1 if gi = hgj
0 otherwise,

=
{ 1 if h = g

0 otherwise.

The function Rij is thus the analogue of a row vector which has one component equal to 1 and
all other components 0. Furthermore, the positioning of the 1 corresponds to the choice of the
element h, which was arbitrary. The set of all functions of this form spans VG. Explicitly, if
f :G→ C is arbitrary then

f =
n∑
i=1

(fi)Rij

where j is fixed so that gj is the identity element. �

The coordinate space of the irreducible representation R(k) is spanned by the d2
k coordi-

nate functions R(k)
pm (where p, m ∈ {1, 2, . . . , dk}), and the sum of the coordinate spaces of R(1),

R(2), . . . , R(s) is spanned by the totality of all coordinate functions R(k)
pm for (k, p,m) in the set

S = { (k, p,m) | 1 ≤ k ≤ s and p, m ∈ {1, 2, . . . , dk} }. But this sum of coordinate spaces must
equal the full space VG of complex valued functions on G, since it must contain the coordinate space
of the regular representation, and so the number of elements in the spanning set S must be at least
|G| = dimVG. So we conclude that

∑s
k=1 d

2
k ≥ |G|, and hence

∑s
k=1 d

2
k = |G| since the reverse

inequality was obtained previously. Since this also shows that the number of elements in S equals
the dimension of VG, which it spans, it follows that the elements of S are linearly independent.
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