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Introduction

A Coxeter group is a group W generated by a set S
subject to defining relations of the form s2 = 1 for all s ∈ S
and (st)mst = 1 for some or all pairs s, t ∈ S.

The pair (W , S) is called a Coxeter system.

Remarkably, every Coxeter group can be faithfully represented
as a group of linear transformations on a real vector space.

In this representation, elements of the set S are reflections.

The finite Coxeter groups are exactly the finite groups
generated by reflections in Euclidean space. e.g. W = Sym(n),
realized as the group of all n× n permutation matrices, with
S = {(1, 2), (2, 3), (3, 4), . . . , (n− 1, n)}.
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A noteworthy automorphism

The only finite Coxeter group with an “interesting”
automorphism is Sym(6).

It happens that there is an automorphism taking transpositions
to permutations of cycle type (a, b)(c, d)(e, f ).

(1, 2) 7→ (1, 2)(3, 4)(5, 6) (2, 3) 7→ (1, 4)(2, 5)(3, 6)

(3, 4) 7→ (1, 3)(2, 4)(5, 6) (4, 5) 7→ (1, 2)(4, 5)(3, 6)

(5, 6) 7→ (1, 4)(2, 3)(5, 6)

For n > 6 this kind of thing can’t happen since the conjugacy
class consisting of all transpositions is distinguished by its size.
And it is easy to show that an automorphism that takes
transpositions to transpositions must be inner.
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Diagrams

A Coxeter system is conveniently specified by its Coxeter graph.

This is just a diagrammatic notation for the presentation.

Example:

There are 8 generators. Generators s, t corresponding to
non-adjacent vertices satisfy (st)2 = 1; for adjacent vertices the
relation is (st)3 = 1.

〈s1, . . . , s8 | s2
i = 1, (s2s3)

3 = (s3s4)
3 = (s4s5)

3 = (s5s6)
3

= (s6s7)
3 = (s7s8)

3 = (s1s4)
3 = 1, (sisj)

2 = 1 (otherwise) 〉

More generally, put a label m on the edge to indicate (st)m = 1,
and label ∞ to indicate no relation (st)anything = 1.

∞

4 5 〈r , s, t | r2 = s2 = t2 = (rs)4 = (rt)5 = 1〉
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Reducible Coxeter systems

Since the generators are involutions, (st)2 = 1 ⇔ st = ts.

Recall that (st)2 = 1 means no edge joining s and t .

(W , S) is reducible if the diagram is disconnected.

Then W is the direct product of Coxeter groups corresponding
to the component diagrams.

An extreme case: � � � � � � � � �

W is an elementary abelian 2-group; Aut(W ) is GL(n, 2).

But today I will focus on irreducible Coxeter systems.
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Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Geometrical Realization

Given (W , S), let V be a vector space over R with basis Π in
1-1 correspondence with the vertices of the diagram.

Define a bilinear form on V via α ·α = 1 for all α ∈ Π, and
α ·β = − cos(π/m) if the vertices corresponding to α, β ∈ Π
are joined by an edge labelled m. (No edge ⇒ α ·β = 0.)

For each α ∈ Π let sα : V → V be the reflection in 〈α〉⊥.

That is, v 7→ v − 2(v ·α)α for all v ∈ V .

It is easy to see that { sα | α ∈ Π } generates a subgroup of
O(V ) that is a homomorphic image of W .

It is a beautiful fact that the homomorphism is an isomorphism.

And W is finite iff V is Euclidean.



Finite Coxeter groups

Finite Coxeter groups = finite Euclidean reflection groups

= arbitrary direct products of the following groups:

Type An: (n vertices, for any n ≥ 1)
Type Bn:

4
(n vertices, for any n ≥ 2)

Type Dn: (n vertices, for any n ≥ 4)

Type I2(m): m (any m > 4)
Type H3: 5

Type H4: 5

Type F4: 4

Type E6:

Type E7:

Type E8:



Finite Coxeter groups

Finite Coxeter groups = finite Euclidean reflection groups

= arbitrary direct products of the following groups:

Type An: (n vertices, for any n ≥ 1)
Type Bn:

4
(n vertices, for any n ≥ 2)

Type Dn: (n vertices, for any n ≥ 4)

Type I2(m): m (any m > 4)
Type H3: 5

Type H4: 5

Type F4: 4

Type E6:

Type E7:

Type E8:



Finite Coxeter groups

Finite Coxeter groups = finite Euclidean reflection groups

= arbitrary direct products of the following groups:

Type An: (n vertices, for any n ≥ 1)
Type Bn:

4
(n vertices, for any n ≥ 2)

Type Dn: (n vertices, for any n ≥ 4)

Type I2(m): m (any m > 4)
Type H3: 5

Type H4: 5

Type F4: 4

Type E6:

Type E7:

Type E8:



Finite Coxeter groups

Finite Coxeter groups = finite Euclidean reflection groups

= arbitrary direct products of the following groups:
Type An: (n vertices, for any n ≥ 1)
Type Bn:

4
(n vertices, for any n ≥ 2)

Type Dn: (n vertices, for any n ≥ 4)

Type I2(m): m (any m > 4)
Type H3: 5

Type H4: 5

Type F4: 4

Type E6:

Type E7:

Type E8:



Root system

Φ = {wα | w ∈ W ,α ∈ Π } is called the root system of W .

Φ = Φ+ ∪Φ− where Φ+ ⊆ { positive linear combinations of Π }
and Φ− = {−γ | γ ∈ Φ+ }.

Ref(W ) = set of reflections in W = { sγ | γ ∈ Φ+ }.

Note that sγ = s−γ (for every γ ∈ Φ).

NO(V )(W ) = { g ∈ O(V ) | gΦ = Φ }.

But the only outer automorphisms of W you get like this are
graph automorphisms, corresponding to symmetries of the
Coxeter graph (i.e. symmetries of the presentation).

This is easy if #W < ∞ but decidedly nontrivial otherwise.
(RH, Peter Rowley & Don Taylor 1997.)
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Automorphisms of finite Coxeter groups

If f ∈ Hom(W , Z (W )) then w 7→ wf (w) is in End(W ).

Let A (W ) be the group of automorphisms of this form.

Since #Z (W ) ≤ 2, it is easy to describe A (W ) in all cases.

Define R(W ) = {θ ∈ Aut(W ) | θ(S) ⊆ Ref(W ) }. (Recall that
Ref(W ) = set of reflections in W = set of conjugates of S.)

Theorem: Aut(W ) = A (W )R(W ), for all irreducible (W , S)
except A5.

Proof (sketch): Ref(W ) generates W and is a union of 1 or 2
classes of involutions. If there is another such set with the
same number of elements as Ref(W ), there is a θ ∈ A (W ) that
maps Ref(W ) to it.
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The reflection preserving automorphisms

Usually, R(W ) is generated by the inner automorphisms
and graph automorphisms (for finite W ).

The dihedral groups are obvious exceptions:
W = 〈sα , sβ〉, where α ·β = − cos(π/m);
if gcd(k , m) = 1 there exists β′ ∈ Φ with α ·β′ = cos(kπ/m);
and there is an automorphism with sα 7→ sα and sβ 7→ sβ′ .

When m = 3 this doesn’t give any outer automorphisms;
when m = 4 or 6 you get one, but it is a graph automorphism;
when m = 5 you get one non-graph outer automorphism.

It is natural to ask if this automorphism of I2(5) extends to H3
and H4 (the only irred groups of rank > 2 with edge labels > 4).

It does.
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Infinite groups

Assume that W is infinite and the diagram of W has no edges
labelled ∞.

Howlett-Rowley-Taylor (1997) proved that the outer
automorphism group of W is necessary finite.

Bill Franzsen, RH and Bernhard Mühlherr (2005) improved this,
showing that the outer automorphism group of W is isomorphic
to the group of graph automorphisms. (That is, all the outer
automorphisms come from permutations of S that preserve the
defining relations.)

The remaining challenge is to deal with diagrams that have ∞’s.

On the next few pages I’ll briefly describe the main ideas of the
2005 paper mentioned above.
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Standard parabolic (or visible) subgroups

The geometrical realization of W identifies S (the generating
set from the presentation) with { sα | α ∈ Π }.

dim V = #Π = #S is called the rank of W .

Subgroups generated by subsets of S are called standard
parabolic subgroups.

Let J ⊆ Π and WJ = 〈 { sα | α ∈ J } 〉.

WJ preserves the subspace VJ spanned by J; so restriction
gives a homomorphism WJ → O(VJ).

The image of this is the geometrical realization of a Coxeter
group of rank #J.

But { sα | α ∈ J } satisfies the defining relations of this Coxeter
group – which is thus isomorphic to WJ .
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Tits cone

Let C = { f ∈ V ∗ | f (α) ≥ 0 for all α ∈ Π }, and for each J ⊆ Π
let CJ = { f ∈ C | f (α) = 0 for α ∈ J, f (α) > 0 for α ∈ Π \ J }.

If f ∈ CJ then the stabilizer of f is WJ .

The Tits cone is U =
⋃

w∈W wC. (It is convex – not obviously.)

Stabilizers of points in U are parabolic subgroups (= conjugates
of WJ ’s).

Now C ∩ Int(U) =
⋃

WJ finite
CJ , and it follows that if f ∈ U then

Stab(f ) is finite iff f ∈ Int(U).

If H ≤ W is finite then H stabilizes some f ∈ Int(U)
(take the average over an H-orbit),
and so H is contained in a finite parabolic.
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Automorphisms of 2-spherical Coxeter groups
The maximal finite parabolic subgroups of W are the
maximal finite subgroups of W .

So automorphisms of W preserve this class of subgroups.

This is our main trick for investigating automorphisms of infinite
Coxeter groups. (The idea is due to Tits.)

Since parabolic subgroups = pointwise stabilizers of subsets of
U, intersections of parabolic subgroups are parabolic.

So if it were true that for each s ∈ S the group 〈s〉 is an
intersection of maximal finite subgroups then it would be true
that every automorphism preserves reflections.

This is actually true for infinite irreducible Coxeter groups such
that mst < ∞ for all s, t ∈ S. One can also prove (in this case)
that reflection preserving automorphisms are orthogonal.

So for these groups all automorphisms are inner by graph.
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The finite continuation of an element

More generally, if w ∈ W is an involution then we define the
finite continuation of w to be the intersection of all the maximal
finite subgroups containing w .

Note that FC(w) is always a parabolic subgroup.

For every finitely generated Coxeter group, we are able to
describe FC(s) for all s ∈ S (by an algorithm that just requires
inspecting the Coxeter graph).

It is then possible to classify the involutions that have the same
finite continuations as the reflections, and reduce the problem
of classifying automorphisms to the problem of classifying
reflection-preserving automorphisms.
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Twists
For some cases in which there are ∞’s in the diagram, one
can find reflection-preserving automorphisms of W that are
“partial conjugations”.

The construction is due to Brady, Mccammond, Mühlherr and
Neumann.

Example:

5

3 4

7 8

∞ is isomorphic to
5

3 4

8 7

∞

Changing the 8 to a 7 the isomorphism becomes an
automorphism.

Let W = 〈S〉 correspond to the diagram on the left, and let
S = {r , s, t , u} (top to bottom, left to right).
Then {r , s, t , ststsuststs} is a second Coxeter generating set
for W , corresponding to the second diagram.
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A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



A generalization of twisting

Suppose that S is the disjoint union of P, Q and R, and that
mab = ∞ whenever a ∈ Q and b ∈ R. Then W is a “free
product with amalgamated subgroup”: W = A ∗C B, where
A = WP∪Q, B = WP∪R and C = WP .

Conversely, suppose that G = H ∗L K , where H , K are
subgroups of G and L = H ∩ K . If (H , A) and (K , B) are
Coxeter systems and C = A∩ B generates L, then (G, A∪ B) is
a Coxeter system.

If (K , B′) is another Coxeter system, and A∩ B′ = A∩ B, then
A∪ B′ is another Coxeter generating set for G, not necessarily
conjugate to A∪ B, even if B and B′ are conjugate.

Twisting corresponds to the special case where L is finite and
B′ = w−1Bw , where w is the longest element of L.
(Observation due to Mauro Grassi.)



The conjecture
Finding a second Coxeter system in a given Coxeter group
is obviously the same thing as finding an isomorphism from
one Coxeter group to another.

Using inner automorphisms, graph automorphisms and the
reflection-preserving automorphisms of dihedral groups and the
Coxeter groups of types H3 and H4, one can build up more
reflection preserving isomorphisms using Mauro’s
generalization of twisting.

We conjecture that every reflection preserving isomorphism
from one Coxeter group to another is obtainable in this way.

For Coxeter diagrams where all edge labels are ∞ you need
only twists, not generalized twists.

The conjecture is true in this case. (Proved for tree diagrams by
L. James, diagrams with no triangles by Tits, completed by
Mühlherr.)
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