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ROBERT B. HOWLETT AND YUNCHUAN YIN

Abstract. Let H be the Hecke algebra associated with a Coxeter group
W , and HJ the Hecke algebra associated with WJ , a parabolic subgroup
of W . In [5] an algorithm was described for the construction of a W-graph
for an induced module H

N
HJ

V , where V is an HJ -module derived from

a WJ -graph. This note is a continuation of [5], and involves the following
results:

• inducing ordered and bipartite W-graphs;
• the relationship between the cell decomposition of a WJ -graph and the

cell decomposition of the corresponding induced W-graph;
• a Mackey-type formula for the restriction of an induced W-graph;
• a formula relating the polynomials used in the construction of induced

W-graphs to Kazhdan-Lusztig polynomials.
The result on cells is a version of a Theorem of M. Geck [4], dealing with cells
in W (allowing unequal parameters).

1. Preliminaries

Let W be a Coxeter group with S the set of simple reflections, and let H be
the corresponding Hecke algebra. We use a variation of the definition given in [6],
taking H to be an algebra over A = Z[q−1, q], the ring of Laurent polynomials
with integer coefficients in the indeterminate q, having an A-basis {Tw | w ∈ W }
satisfying

TsTw =

{
Tsw if �(sw) > �(w)

Tsw + (q − q−1)Tw if �(sw) < �(w),

for all w ∈ W and s ∈ S. We also define A+ = Z[q], the ring of polynomials in
q with integer coefficients, and let a �→ a be the involutory automorphism of A
such that q = q−1. This involution on A extends to an involution on H satisfying
Ts = T−1

s = Ts + (q−1 − q) for all s ∈ S. This gives Tw = T−1
w−1 for all w ∈ W .

For each J ⊆ S define WJ = 〈J〉, the corresponding parabolic subgroup of W ,
and let DJ = {w ∈ W | �(ws) > �(w) for all s ∈ J }, the set of minimal coset
representatives of W/WJ . Let HJ be the Hecke algebra associated with WJ . As is
well known, HJ can be identified with a subalgebra of H .

1.1. Ordered W -graphs. Modifying the definitions in [6] to suit our definition of
the Hecke algebra, a W-graph is a set Γ (the vertices of the graph) with a set Θ of
two-element subsets of Γ (the edges) together with the following additional data:
for each vertex γ we are given a subset Iγ of S, and for each ordered pair of vertices
δ, γ we are given an integer µ(δ, γ) which is nonzero if and only if {δ, γ} ∈ Θ.
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These data are subject to the requirement that AΓ, the free A-module on Γ, has
an H -module structure satisfying

(1) Tsγ =

⎧⎨
⎩−q−1γ if s ∈ Iγ

qγ +
∑

{δ∈Γ|s∈Iδ} µ(δ, γ)δ if s /∈ Iγ ,

for all s ∈ S and γ ∈ Γ. If τs is the A-endomorphism of AΓ such that τs(γ) is the
right-hand side of Eq. (1) then this requirement is equivalent to the condition that
for all s, t ∈ S such that st has finite order,

τsτtτs . . .︸ ︷︷ ︸
m factors

= τtτsτt . . .︸ ︷︷ ︸
m factors

where m is the order of st.
To avoid over-proliferation of symbols, we shall use the name of the vertex set

of a W-graph to also refer to the W-graph itself. We call Iγ the descent set of the
vertex γ ∈ Γ, and we call µ(δ, γ) and µ(γ, δ) the edge weights associated with the
edge {δ, γ}.

Given a W-graph Γ we define

Γ−
s = { γ ∈ Γ | s ∈ Iγ },

Γ+
s = { γ ∈ Γ | s /∈ Iγ }.

We make the following definition.

Definition 1.1. An ordered W -graph is a set Γ with a W -graph structure and a
partial order � satisfying the following conditions:

(i) for all θ, γ ∈ Γ such that µ(θ, γ) �= 0, either θ < γ or γ < θ;
(ii) for all s ∈ S and γ ∈ Γ+

s the set { θ ∈ Γ−
s | γ < θ and µ(θ, γ) �= 0 } is either

empty or consists of a single element sγ;
(iii) for all s ∈ S and γ ∈ Γ+

s , if sγ exists then µ(sγ, γ) = 1.

The following lemma is well known.

Lemma 1.2 (Deodhar [2, Lemma 3.2]). Let J ⊆ S and s ∈ S, and define

D−
J,s = { d ∈ DJ | �(sd) < �(d) },

D+
J,s = { d ∈ DJ | �(sd) > �(d) and sd ∈ DJ },

D0
J,s = { d ∈ DJ | �(sd) > �(d) and sd /∈ DJ },

so that DJ is the disjoint union D−
J,s ∪ D+

J,s ∪ D0
J,s. Then sD+

J,s = D−
J,s, and if

d ∈ D0
J,s then sd = dt for some t ∈ J .

1.2. Construction of induced W -graphs. Following the notation and termi-
nology of [5], we assume that Γ is a WJ -graph and M the corresponding induced
H -module.

Theorem 1.3 ([5, Theorem 5.1]). The module M has a unique basis

{Cw,γ | w ∈ DJ , γ ∈ Γ }
such that Cw,γ = Cw,γ for all w ∈ DJ and γ ∈ Γ, and

Cw,γ =
∑

y∈DJ ,δ∈Γ

Py,δ,w,γTyδ

for some elements Py,δ,w,γ ∈ A+ with the following properties :
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(i) Py,δ,w,γ = 0 if y � w;

(ii) Pw,δ,w,γ =

{
1 if δ = γ,
0 if δ �= γ;

(iii) Py,δ,w,γ has zero constant term if (y, δ) �= (w, γ).

The following recursive formula for the polynomials Py,δ,w,γ is proved in [5]:
Py,δ,w,γ = P ′

y,δ,w,γ − P ′′
y,δ,w,γ, where

(2) P ′
y,δ,w,γ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Psy,δ,v,γ − qPy,δ,v,γ if y ∈ D+
J,s,

Psy,δ,v,γ − q−1Py,δ,v,γ if y ∈ D−
J,s,

(−q − q−1)Py,δ,v,γ +
∑

θ∈Γ+
t

µ(δ, θ)Py,θ,v,γ if y ∈ D0
J,s and δ ∈ Γ−

t ,

0 if y ∈ D0
J,s and δ ∈ Γ+

t ;

(3) P ′′
y,δ,w,γ =

∑
(z,θ)≺(v,γ)

(z,θ)∈Λ−
s

µ(z, θ, v, γ)Py,δ,z,θ.

Given y, w ∈ DJ and δ, γ ∈ Γ with (y, δ) �= (w, γ), we define an integer
µ(y, δ, w, γ) as follows. If y < w then µ(y, δ, w, γ) is the coefficient of q in −Py,δ,w,γ,
and if w < y then it is the coefficient of q in −Pw,γ,y,δ. If neither y < w nor w < y
then

µ(y, δ, w, γ) =

{
µ(δ, γ) if y = w,
0 if y �= w.

We write (y, δ) ≺ (w, γ) if y < w and µ(y, δ, w, γ) �= 0.
It is shown in Theorem 5.3 of [5] that the basis elements Cw,γ can be identified

with the vertices of a W-graph for the module M ; we shall denote this W-graph
by Λ. The descent set of the vertex Cw,γ of Λ is

I(w, γ) = { s ∈ S | �(sw) < �(w) or sw = wt for some t ∈ Iγ }
and the edge weight for ((y, δ), (w, γ)) is µ(y, δ, w, γ) (as defined above). Thus
{Cy,δ, Cw,γ} is an edge of Λ if and only if µ(y, δ, w, γ) �= 0, and this occurs if and
only if either (y, δ) ≺ (w, γ) or (w, γ) ≺ (y, δ), or y = w and {δ, γ} is an edge of Γ.

We define

Λ−
s = { (w, γ) ∈ DJ × Γ | s ∈ I(w, γ) }

= { (w, γ) | w ∈ D−
J,s or w ∈ D0

J,s with t ∈ Iγ }.

Theorem 1.4 ([5, Theorem 5.2]). Let w ∈ DJ and γ ∈ Γ. Then for all s ∈ S such
that �(sw) > �(w) and sw ∈ DJ we have

(4) TsCw,γ = qCw,γ + Csw,γ +
∑

µ(y, δ, w, γ)Cy,δ,

where the sum is over all (y, δ) ∈ Λ−
s such that (y, δ) ≺ (w, γ).

It is convenient to distinguish three kinds of edges of the W -graph Λ. Firstly,
there is an edge from the vertex Cw,γ to the vertex Cw,δ whenever there is an edge
from γ to δ in Γ. We call these horizontal edges. Next, if s ∈ S and w is in either
D+

J,s or D−
J,s then there is an edge joining Cw,γ and Csw,γ . We call these vertical

edges. All other edges are called transverse.
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2. Inducing ordered W-graphs

Proposition 2.1. Suppose that vertices Cw,γ and Cz,θ of Λ are joined by a trans-
verse edge, and suppose that �(w) � �(z). Then I(z, θ) ⊆ I(w, γ).

Proof. Let s ∈ I(z, θ), and suppose, for a contradiction, that s /∈ I(w, γ). Since
the edge is not horizontal we have either (w, γ) ≺ (z, θ) or (z, θ) ≺ (w, γ), and
the assumption �(w) � �(z) means that the former alternative holds. So we have
(w, γ) ≺ (z, θ), with (z, θ) ∈ Λ−

s and (w, γ) ∈ Λ+
s . Since Λ is a W -graph,

TsCw,γ = qCw,γ +
∑

(y,δ)∈Λ−
s

µ(y, δ, w, γ)Cy,δ

and, in particular, one of the terms on the right hand side is µ(z, θ, w, γ)Cz,θ. The
coefficient µ(z, θ, w, γ) is nonzero by the hypothesis that Cw,γ and Cz,θ are joined
by an edge of Λ. But by Theorem 1.4,

TsCw,γ = qCw,γ + Csw,γ +
∑

µ(y, δ, w, γ)Cy,δ,

with y � w for all terms in the sum. Since z � w, it follows that

µ(z, θ, w, γ)Cz,θ = Csw,γ ,

which means that the edge {Cw,γ , Cz,θ} is vertical rather than transverse, giving
us the desired contradiction. �

Proposition 2.2. Suppose that the WJ -graph Γ admits a partial order � satisfying
the conditions of Definition 1.1. Then the induced W -graph Λ admits a partial order
� satisfying Definition 1.1 and having the following properties :

(i) if δ, γ ∈ Γ and y, w ∈ DJ are such that y � w and δ � γ, then Cy,δ � Cw,γ ;
(ii) if δ, γ ∈ Γ and y, w ∈ D+

J,s for some s ∈ S, then Cy,δ � Cw,γ implies that
Csy,δ � Csw,γ ;

(iii) if y ∈ D0
J,s and w ∈ D+

J,s for some s ∈ S, then Cy,δ � Cw,γ implies
that Cy,tδ � Csw,γ, for all γ ∈ Γ and δ ∈ Γ+

t such that tδ exists, where
t = y−1sy;

(iv) if (y, δ), (w, γ) ∈ DJ × Γ satisfy Py,δ,w,γ �= 0 then Cy,δ � Cw,γ.

Proof. We define � on Λ to be the minimal transitive relation satisfying the re-
quirements (i), (ii) and (iii). It is clear that Cy,δ � Cw,γ implies that y � w, with
equality only if δ � γ. Hence the fact that the relation � on Γ is antisymmetric
implies the same for the relation � on Λ.

We prove first that Condition (iv) is satisfied, using induction on �(w). In the
case �(w) = 0 the assumption that Py,δ,w,γ �= 0 forces (y, δ) = (w, γ), and so
Cy,δ � Cw,γ . So suppose that �(w) > 0, and choose s ∈ S with �(sw) < �(w).
Recall that Py,δ,w,γ = P ′

y,δ,w,γ − P ′′
y,δ,w,γ; hence either P ′′

y,δ,w,γ �= 0 or P ′
y,δ,w,γ �= 0.

If P ′′
y,δ,w,γ �= 0 then by Eq. (3) there exists a pair (z, θ) with (z, θ) ≺ (sw, γ)

and Py,δ,z,θ �= 0. The inductive hypothesis then yields both Cy,δ � Cz,θ and
Cz,θ � Csw,γ , and since also Csw,γ � Cw,γ it follows that Cy,δ � Cw,γ , as required.
So we may assume that P ′

y,δ,w,γ �= 0.
Suppose first that y ∈ D+

J,s. By Eq. (2) either Py,δ,sw,γ �= 0 or Psy,δ,sw,γ �= 0,
and so the inductive hypothesis yields that either Cy,δ � Csw,γ or Csy,δ � Csw,γ .
Since Cy,δ � Csy,δ we obtain Cy,δ � Csw,γ in either case, and hence Cy,δ � Cw,γ .
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Now suppose that y ∈ D−
J,s. Again Eq. (2) and the inductive hypothesis combine

to yield that either Cy,δ � Csw,γ or Csy,δ � Csw,γ . The former alternative yields
Cy,δ � Cw,γ as in the previous cases, while the latter alternative yields the same
result since (ii) above holds.

Finally, suppose that y ∈ D0
J,s, and let t = y−1sy ∈ J . By Eq. (2) we see that

either Py,δ,sw,γ �= 0, which yields Cy,δ � Cw,γ as in the previous cases, or else
δ ∈ Γ−

t and µ(δ, θ)Py,θ,sw,γ �= 0 for some θ ∈ Γ+
t . Thus {θ, δ} is an edge of Γ with

t ∈ Iδ and t /∈ Iθ, and by Conditions (i), (ii) of Definition 1.1 it follows that either
δ = tθ or δ � θ. Moreover, since Py,θ,sw,γ �= 0 the inductive hypothesis yields that
Cy,θ � Csw,γ . If δ � θ then Cy,δ � Cy,θ, and so Cy,δ � Csw,γ � Cw,γ . If δ = tθ
then Cy,δ � Cw,γ follows from Cy,θ � Csw,γ , in view of (iii) above.

It remains to show that Λ is an ordered W -graph in the sense of Definition 1.1.
Let Cy,δ, Cw,γ ∈ Λ with µ(y, δ, w, γ) �= 0. If y = w then µ(y, δ, w, γ) = µ(δ, γ),

and since Γ is an ordered WJ -graph it follows that γ and δ are comparable, whence
so are (w, γ) and (w, δ) = (y, δ). On the other hand, if y �= w then µ(y, δ, w, γ) is a
coefficient of one or other of the polynomials Py,δ,w,γ and Pw,γ,y,δ, and so (iv) above
implies that (w, γ) and (y, δ) are comparable. So Condition (i) of Definition 1.1
holds.

Let s ∈ S and (w, γ) ∈ Λ+
s , and suppose that (y, δ) ∈ Λ−

s with Cw,γ < Cy,δ and
µ(y, δ, w, γ) �= 0. We must show that (y, δ) is the unique such element of Λ−

s .
Suppose first that the edge {Cy,δ, Cw,γ} is transverse. Since s ∈ I(y, δ) and

s /∈ I(w, γ), it follows from Proposition 2.1 that �(w) �� �(y), and so (y, δ) ≺ (w, γ).
But this implies that Py,δ,w,γ �= 0, and in view of (iv) this contradicts the assump-
tion that Cw,γ < Cy,δ. So {Cy,δ, Cw,γ} is either vertical or horizontal.

If the edge {Cy,δ, Cw,γ} is vertical then δ = γ and y = rw for some r ∈ S.
Since Cw,γ < Cy,γ we have w � y; so �(w) � �(rw). Now since s ∈ I(rw, γ) and
s /∈ I(w, γ) it follows readily that r = s. So (y, δ) = (sw, γ); moreover, this case
can only arise if w ∈ D+

J,s.
Now suppose that {Cy,δ, Cw,γ} is horizontal, so that y = w and {δ, γ} is an edge

of Γ. Since Γ is an ordered WJ -graph, Condition (i) of Definition 1.1 yields that
either γ < δ or δ < γ; however, the latter alternative would give Cw,δ < Cw,γ ,
contradicting our assumption that Cw,γ < Cy,δ = Cw,δ. Now since s ∈ I(w, δ) and
s /∈ I(w, γ) we see that w ∈ D0

J,s, and t = w−1sw is in Iδ and not in Iγ . Since Γ
satisfies Condition (ii) of Definition 1.1 it follows that δ = tγ.

We have shown that

(y, δ) =

{
(sw, γ) if w ∈ D+

J,s

(w, tγ) if w ∈ D0
J,s

where t = w−1sw. So (y, δ) is uniquely determined. In accordance with Defini-
tion 1.1, we write Cy,δ = sCw,γ .

It remains to check that Λ satisfies Condition (iii) of Definition 1.1; that is, we
must show that if (w, γ) ∈ Λ+

s and Cy,δ = sCw,γ then µ(y, δ, s, γ) = 1. If w ∈ D0
J,s

with w−1sw = t then sCw,γ is defined if and only if tγ is defined, in which case
sCw,γ = Cw,tγ . Moreover, in this case we have that µ(w, tγ, w, γ) = µ(tγ, γ) = 1,
since Γ satisfies Condition (iii) of Definition 1.1. On the other hand, if w ∈ D+

J,s

then s(w, γ) = (sw, γ), and the desired conclusion that µ(sw, γ, w, γ) = 1 follows
from Theorem 1.4. �
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3. Inducing bipartite W-graphs

Definition 3.1. A W-graph is called bipartite if its vertex set Γ is the disjoint
union of nonempty sets Γ1, Γ2 such that µ(δ, γ) = 0 whenever δ, γ ∈ Γ1 or δ, γ ∈ Γ2.

We assume that a WJ -graph Γ is bipartite and let Γ1, Γ2 be the two parts of the
vertex set. Then the vertex set of the induced W-graph Λ, namely

{(w, γ) | γ ∈ Γ, w ∈ DJ},
is the disjoint union of the following two sets:

Λ1 = {(w, γ) | �(w) is even and γ ∈ Γ1 or �(w) is odd and γ ∈ Γ2};
Λ2 = {(w, γ) | �(w) is even and γ ∈ Γ2 or �(w) is odd and γ ∈ Γ1}.

Proposition 3.2. Assume that Γ = Γ1 ∪ Γ2 is bipartite as above. Then
(i) if δ, γ are in the same part Γi of Γ and �(w) − �(y) is even, or δ, γ are in

different Γi and �(w) − �(y) is odd, then the polynomial Py,δ,w,γ involves
only even powers of q.

(ii) if δ, γ are in different parts of Γ and �(w) − �(y) is even, or δ, γ are in the
same part and �(w)− �(y) is odd, then the polynomial Py,δ,w,γ involves only
odd powers of q.

Proof. Use induction on �(w). If �(w) = 0, it follows from (i) and (ii) of Theo-
rem 1.3. So assume that �(w) > 0 and let w = sv where s ∈ S and �(v) = �(w)− 1.

Suppose first that δ, γ are in the same part of Γ and �(w) − �(y) is even, which
is one of the cases in Part (i). The inductive hypothesis immediately implies that
the terms on the right hand side of Eq. (2) involve only even powers of q, with
the possible exception of the terms µ(δ, θ)Py,θ,v,γ in the sum that appears in the
third case (when y ∈ D0

J,s and δ ∈ Γt
−). But if µ(δ, θ) �= 0 then θ and δ must be

in different parts of Γ, which also implies that θ, γ are in different parts of Γ; so
Py,θ,v,γ (where �(v) − �(y) is odd) involves only even powers of q by the inductive
hypothesis. Hence P ′

y,δ,w,γ involves only even powers of q.
Let us consider the powers of q in P ′′

y,δ,w,γ . The nonzero terms in Eq. (3) cor-
respond to quadruples (z, θ, v, γ) such that Pz,θ,v,γ has a nonzero coefficient of q
(since this coefficient is −µ(z, θ, v, γ)). Hence, by the inductive hypothesis, Pz,θ,v,γ

involves only odd powers of q. There are now two possible cases.
(1) If �(v) − �(z) is even, then θ, γ must in different parts of Γ; so θ, δ are in

different parts of Γ and

�(z) − �(y) = (�(w) − �(y)) − (�(v) − �(z)) − 1

is odd. So Py,δ,z,θ involves only even powers of q, by the inductive hypoth-
esis.

(2) If �(v)− �(z) is odd, then θ, γ must be in the same part of Γ; so θ, δ are in
the same part of Γ and �(z) − �(y) is even. So again Py,δ,z,θ involves only
even powers of q, by the inductive hypothesis.

Hence P ′′
y,δ,w,γ, like P ′

y,δ,w,γ , involves only even powers of q.
The other three cases are all very similar to the first case; we omit the details. �
As an immediate consequence of Proposition 3.2 we have the following result.

Theorem 3.3. Assume that WJ -graph Γ is bipartite. Then the induced W-graph
Λ is bipartite.
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4. Inducing cells

Let (w, γ) ∈ DJ × Γ, and let s ∈ S. If (w, γ) ∈ Λ−
s then TsCw,γ = −q−1Cw,γ ,

and so

(5) −q−1
∑

y∈DJ

δ∈Γ

Py,δ,w,γTyδ =
∑

y∈DJ

δ∈Γ

Py,δ,w,γTsTyδ.

We also have

TsTyδ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tsyδ if y ∈ D+
J,s

Tsyδ + (q − q−1)Tyδ if y ∈ D−
J,s

−q−1Tyδ if y ∈ D0
J,s and δ ∈ Γ−

t

qTyδ +
∑

θ∈Γ−
t

µ(θ, δ)Tyθ if y ∈ D0
J,s and δ ∈ Γ+

t

where t = y−1sy. Substituting this into Eq. (5) and equating coefficients yields a
proof of the following result.

Proposition 4.1. Let s ∈ S and (w, γ) ∈ Λ−
s . If y ∈ D0

J,s and δ ∈ Γ+
t , where

t = y−1sy, then Py,δ,w,γ = 0. If y ∈ D+
J,s then Py,δ,w,γ = −qPsy,δ,w,γ for all δ ∈ Γ.

Note that this simplifies our original inductive formulas for the polynomials
Py,δ,w,γ. In particular, in the situation of Eq. (3) we have that P ′′(y, δ, w, γ) = 0
when y ∈ D0

J,s and δ ∈ Γ+
t .

Let ≤Γ be the preorder on Γ defined in [6] by the rule that δ ≤Γ γ if and
only if there exists a finite sequence δ = γ0, γ1, . . . , γk = γ of elements of Γ with
µ(γi−1, γi) �= 0 and I(γi−1) � I(γi) for all i ∈ {1, 2, . . . , k}.
Proposition 4.2. Let y, w ∈ DJ and δ, γ ∈ Γ with δ �≤Γ γ. Then Py,δ,w,γ = 0.

Proof. Use induction on �(w). Since δ �= γ the case �(w) = 0 follows from (i) and
(ii) of Theorem 1.3. So assume that �(w) > 0, and let w = sv where s ∈ S and
�(v) = �(w) − 1.

The inductive hypothesis immediately implies that the terms on the right hand
side of Eq. (2) are zero, with the possible exception of the terms µ(δ, θ)Py,θ,v,γ in
the sum that appears in the third case (when y ∈ D0

J,s and δ ∈ Γ−
t ). In all of

these terms we have that Iδ � Iθ, since t ∈ Iδ and t /∈ Iθ. So either δ ≤Γ θ or
else µ(δ, θ) = 0. By the inductive hypothesis, either θ ≤Γ γ or else Py,θ,v,γ = 0.
But since δ �≤Γ γ we cannot have both δ ≤Γ θ and θ ≤Γ γ; so either µ(δ, θ) = 0 or
Py,θ,v,γ = 0. So all the terms µ(δ, θ)Py,θ,v,γ are zero, and so P ′

y,δ,w,γ = 0.
All the elements z appearing on the right hand side of Eq. (3) satisfy �(z) � �(v),

and so the inductive hypothesis tells us that if δ �≤Γ θ then Py,δ,z,θ = 0. Further-
more, if θ �≤Γ γ then Pz,θ,v,γ = 0, and so µ(z, θ, v, γ) = 0. Since δ �≤Γ γ we must
have either θ �≤Γ γ or δ �≤Γ θ, and so all the terms µ(z, θ, v, γ)Py,δ,z,θ are zero. So
P ′′

y,δ,w,γ = 0, and hence Py,δ,w,γ = 0, as required. �
Suppose now that Cz,θ and Cw,γ vertices of Λ that are adjacent and satisfy

I(z, θ) � I(w, γ). If w = z then s ∈ I(w, θ) and s /∈ I(w, γ) forces sw = wt for
some t ∈ Iθ with t /∈ Iγ . So in this case θ and γ are adjacent vertices of Γ with
Iθ � Iγ . In particular, θ ≤Γ γ. The same conclusion holds trivially if the edge
{Cz,θ, Cw,γ} is vertical, since in this case θ = γ. If the edge is transverse then by
Proposition 2.1 we deduce that �(z) < �(w), and so we must have (z, θ) ≺ (w, γ).
Thus Pz,θ,w,γ �= 0, and so θ ≤Γ γ by Proposition 4.2.
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Let ≤Λ be the preorder relation on the W -graph Λ generated by the requirement
that Cz,θ ≤Λ Cw,γ whenever Cz,θ and Cw,γ are adjacent and I(z, θ) � I(w, γ). The
above calculations have proved the following theorem.

Theorem 4.3. If Cz,θ and Cw,γ are vertices of Λ with Cz,θ ≤Λ Cw,γ then θ ≤Γ γ.

Recall from [6] that vertices θ, γ ∈ Γ lie in the same cell of Γ if and only if
θ ≤Γ γ and γ ≤Γ θ. Similarly, Cz,θ and Cw,γ are in the same cell of Λ if and only
if Cz,θ ≤Λ Cw,γ and Cw,γ ≤Λ Cz,θ. Theorem 4.3 shows that if ∆ is a cell in Γ then
the set {Cw,γ | w ∈ DJ and γ ∈ ∆ } is a union of cells in Λ. In the case that Γ
is the Kazhdan-Lusztig WJ -graph for the regular representation, this result (and
Theorem 4.3) have been proved by Meinolf Geck [4].

5. WK-cells in induced W-graphs

Let J, K ⊆ S, and let ρ be a representation of WJ . Inducing to W and then re-
stricting to WK yields a representation ResW

WK
(IndW

WJ
(ρ)), and by Mackey’s formula

(see [8, 44.2]) we have

(6) ResW
WK

(IndW
WJ

(ρ)) ∼=
∑

d

IndWK

WK∩dWJd−1(ResdWJd−1

WK∩dWJd−1(dρ))

where d runs through a set of representatives of the WK\W/WJ double cosets, and
dρ is the representation of dWJd−1 defined by

(dρ)x = ρ(d−1xd)

for all x ∈ dWJd−1. Our aim is to describe a W -graph version of Eq. (6).
If J, K ⊆ S we define D−1

K = { x−1 | x ∈ DK } and DKJ = D−1
K ∩ DJ . It is well

known that every WK\W/WJ double coset contains a unique element d ∈ DKJ ,
and every w ∈ WKdWJ can be expressed in the form w = udt with u ∈ WK and
t ∈ WJ , and �(w) = �(u) + �(d) + �(t).

The following result is proved in [7, Theorem 2.7.4].

Proposition 5.1 (Kilmoyer). Let K and J be subsets of S. Then each WK\W/WJ

double coset contains a unique element of DKJ . Moreover, whenever d ∈ DKJ we
have WK ∩ dWJd−1 = WL, where L = K ∩ dJd−1.

Note that, as a consequence of Proposition 5.1, if d ∈ DKJ then the isomorphism
z �→ d−1zd from WK ∩ dWJd−1 to d−1WKd ∩ WJ preserves lengths of elements.

Definition 5.2. Whenever L ⊆ K ⊆ S we define DK
L = WK ∩ DL, the set of

minimal length coset representatives for WK/WL.

Let J, K ⊆ S and w ∈ W , and let d ∈ WKwWJ ∩ DKJ . Suppose that u ∈ WK

is such that ud ∈ DJ . Writing L = K ∩ dJd−1, we can express u in the form u′v
with u′ ∈ DK

L and v ∈ WL and then we have

ud = u′vd = u′dv′

where v′ = d−1vd ∈ d−1WKd ∩ WJ and

�(ud) = �(u) + �(d) = �(u′) + �(v) + �(d) = �(u′) + �(d) + �(v′).

Since ud ∈ DJ and v′ ∈ WJ this forces �(v′) = 0. We conclude that

(7) DJ = { ud | d ∈ DKJ and u ∈ DK
K∩dJd−1 }.

Returning now to W-graphs, we start with a trivial observation.
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Proposition 5.3. Any W-graph becomes a WL-graph if the elements of S\L are
ignored.

We write ResS
L(Γ) for the WL-graph obtained in this way. Of course, the WL-

module obtained from ResS
L(Γ) is simply the restriction of the W-module obtained

from Γ.
Now let Γ be a WJ -graph and Λ = IndS

J (Γ) the induced W -graph, constructed
as in Section 1. The vertex set of Λ can be identified with the set

DJ × Γ = { (x, γ) | x ∈ DJ , γ ∈ Γ },
which is in one to one correspondence with

{ (u, d, γ) | u ∈ DK
K∩dJd−1, d ∈ DKJ , γ ∈ Γ }.

Consider a fixed d, and put L = K ∩ dJd−1. The vertices (ud, γ) of ResS
K(Λ),

as u ∈ DK
L and γ ∈ Γ vary, span a subgraph of ResS

K(Λ), which we refer to as
the d-subgraph of ResS

K(Λ). We shall show that the d-subgraph of ResS
K(Λ) is a

WK-graph.
Because d−1Ld ⊆ J and the the isomorphism z �→ dzd−1 from Wd−1Ld to WL

is length preserving, the Wd−1Ld-graph ResJ
d−1Ld immediately gives rise to a WL-

graph, which, for brevity, we refer to as dΓ. We write the vertices of dΓ as pairs
dγ, where γ varies over vertices of Γ. The descent set of dγ ∈ dΓ is

Idγ = { dsd−1 | s ∈ Iγ ⊆ J and dsd−1 ∈ K } ⊆ K ∩ dJd−1,

and the edges and edge weights of dΓ correspond exactly to those of Γ:

µ(dγ, dγ′) = µ(γ, γ′)

for all γ, γ′ ∈ Γ. The vertex set of the induced WK-graph IndK
L (dΓ) is

{ (u, dγ) | u ∈ DK
L and γ ∈ Γ },

which is in obvious one to one correspondence with the vertex set of the d-subgraph
of ResS

K(Λ). We shall show that these graphs are actually isomorphic.

Lemma 5.4. The descent set of the vertex (u, dγ) of IndK
L (dΓ) equals the descent

set of the vertex (ud, γ) of ResS
K(Λ).

Proof. The descent set of (u, dγ) consists of the s ∈ K such that either �(su) < �(u)
or u−1su ∈ Idγ , and the descent set of (ud, γ) consists of the s ∈ K such that either
�(sud) < �(ud) or (ud)−1s(ud) ∈ Iγ . It is clear from the fact that ud ∈ DJ that
�(su) < �(u) if and only if �(sud) < �(ud). Moreover, the definition of dΓ gives
Idγ = d(J ∩ Iγ)d−1; so u−1su ∈ Idγ immediately implies that (ud)−1s(ud) ∈ Iγ .
On the other hand, since u ∈ WK and Iγ ⊆ J , if (ud)−1s(ud) = s′ ∈ Iγ then
ds′d−1 = u−1su ∈ WK ∩ dWJd−1 = WL, whence �(ds′d−1) = �(s′) = 1, giving
u−1su ∈ L ∩ dIγd−1 = d(J ∩ Iγ)d−1. �

The following result shows that the edges and edge weights of IndK
L (dΓ) and the

d-subgraph of ResS
K(Λ) also agree.

Lemma 5.5. Let J, K, d, L, Γ, dΓ be as in the discussion above. Let Py,δ,w,γ (for
y, w ∈ DJ and δ, γ ∈ Γ) be the polynomials appearing in the construction of
IndS

J (Γ), and let PK
y,dδ,w,dγ (for y, w ∈ DK

L and dδ, dγ ∈ dΓ) be the correspond-
ing polynomials in the construction of IndK

L (dΓ). Then PK
y,dδ,w,dγ = Pyd,δ,wd,γ, for

all y, w ∈ DK
L and γ, δ ∈ Γ.
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Note that Eq. (7) above shows that yd, wd ∈ DJ , as necessary for the statement
to make sense.

The proof of Lemma 5.4 is a straightforward induction on �(w). Since yd � d,
Theorem 1.3 gives

PK
y,dδ,1,dγ = Pyd,δ,d,γ =

{
1 if (y, dδ) = (1, dγ)
0 otherwise,

which starts the induction. Turning to the inductive step, let w ∈ DK
L with

�(w) � 1, and write w = sv with �(v) < �(w). Note that s ∈ K, since w ∈ WK .
Now for all y ∈ DK

L we see that y−1sy ∈ L if and only if (yd)−1s(yd) ∈ J , and it
follows readily that the three cases y ∈ D+

L,s, y ∈ D−
L,s, y ∈ D0

L,s correspond to the
three cases yd ∈ D+

J,s, yd ∈ D−
J,s, yd ∈ D0

J,s. When y ∈ D0
L,s we write t = y−1sy;

note that (for any δ ∈ Γ) we have dδ ∈ (dΓ)+t if and only if δ ∈ Γ+
d−1td. Following

the terminology of Eq. (2), we call the cases y ∈ D+
L,s, y ∈ D−

L,s, y ∈ D0
J,s with

dδ ∈ (dΓ)−t and y ∈ D0
J,s with dδ ∈ (dΓ)+t respectively cases (a), (b), (c) and (d).

Then, as in Eq. (9),

PK′
y,dδ,w,dγ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

PK′
sy,dδ,v,dγ − qPK′

y,dδ,v,dγ (case (a)),

PK′
sy,dδ,v,dγ − q−1PK′

y,dδ,v,dγ (case (b)),

(−q − q−1)PK′
y,dδ,v,dγ +

∑
dθ∈dΓ+

t

µ(dδ, dθ)PK′
y,dθ,v,dγ (case (c)),

0 (case (d)).

Since for all the terms in the sum in case (c) we have µ(dδ, dθ) = µ(δ, θ), with θ run-
ning through all elements of Γ+

d−1td as dθ runs through all elements of (dΓ)+t , it fol-
lows from the inductive hypothesis that the right hand side above equals the corre-
sponding formula for P ′

yd,δ,wd,γ obtained from Eq. (2). Thus PK′
y,dδ,w,dγ = P ′

yd,δ,wd,γ.
In a similar fashion, it follows from Eq. (3) that PK′′

y,dδ,w,dγ = P ′′
yd,δ,wd,γ. The point

is that (zd, θ) ∈ Λ−
s if and only if zd ∈ D−

J,s or zd ∈ D0
J,s with (zd)−1s(zd) ∈ Iθ,

and this corresponds to (z, dθ) ∈ (IndK
L )−s ; moreover, the inductive hypothesis gives

ν(zd, θ, vd, γ) = νK(z, dθ, v, dγ) and (zd, θ) ≺ (vd, γ) if and only if (z, dθ) ≺ (v, dγ).
So it follows that PK

y,dδ,w,dγ = Pyd,δ,wd,γ, as required.
Since the coefficients of the polynomials PK

y,dδ,w,dγ and Pyd,δ,wd,γ determine the
edges and edge weights of IndK

L (dΓ) and the d-subgraph of ResS
K(Λ), Lemmas 5.4

and 5.5 combine to show that these graphs are isomorphic. In particular, the d-
subgraph of ResS

K(Λ) is a WK-graph.
In view of Eq. (7) we see that the vertex set of ResK(Λ) is the disjoint union

of the vertex sets of its d-subgraphs, as d runs through all elements of DKJ . It
seems reasonable to expect, therefore, that each d-subgraph is a union of WK-cells
of ResK(Λ). To prove this, we make use of the following result.

Lemma 5.6 (Deodhar[2, Lemma 3.5]). Let d ∈ D−1
K and w ∈ W, and write w = ue

with e ∈ D−1
K and u ∈ WK . Then d � w if and only if d � e.

As above, let Γ be a WJ -graph and Λ = IndS
J (Γ), and consider the WK-graph

ResS
K(Λ). Let d, e be distinct elements of DKJ with �(d) � �(e). We show that if

there is an edge of ResS
K(Λ) joining a vertex α of the d-subgraph and a vertex β of
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the e-subgraph then e � d, and the descent set of α is a subset of the descent set
of β.

We write α = (ud, γ) and β = (ve, δ), where u ∈ DK
K∩dJd−1 and v ∈ DK

K∩eJe−1 ,
and γ, δ ∈ Γ. Note that since d �= e the edge joining α and β is not horizontal.
Suppose first that it is transverse. Then either ud � ve or ve � ud. But the former
alternative would give d � ve and hence d � e by Lemma 5.6, contradicting our
assumptions that d �= e and �(e) � �(d). So we must have ve � ud, and, by the
same argument, e � d. Moreover, I(ud, γ) ⊆ I(ve, δ), by Proposition 2.1, and so
I(ud, γ) ∩ K, which is the descent set of α in ResS

K(Λ), is a subset of I(ve, δ) ∩ K,
the descent set of β.

We now consider the case that {α, β} is vertical, which means that δ = γ and
ud = sve for some s ∈ S. We either have ud � ve or ve � ud, depending on
whether �(sve) = �(ve) − 1 or �(sve) = �(ve) + 1. As in the last paragraph, the
former alternative gives d � e, contradicting our hypotheses. So ve � ud, and
e � d.

Suppose, for a contradiction, that I(ud, γ) ∩ K � I(ve, δ) ∩ K, so that there
exists an r ∈ K with r ∈ I(ud, γ) and r /∈ I(ve, γ). Observe first that r �= s, since
otherwise we would have

WKdWJ = WKudWJ = WKrudWJ = WKveWJ = WKeWJ ,

contradicting the assumption that d and e are distinct elements of DKJ . Now
�(rve) > �(ve), since r /∈ I(ve, δ). Since also �(sve) > �(ve), it follows that
�(rsve) = �(ve) + 2; that is, �(rud) = �(ud) + 1. Since r ∈ I(ud, γ) this forces
rud = udt for some t ∈ Iγ ⊆ J . Now udt must be the longest element in W{r,s}udt,
since �(rudt) = �(du) < �(dut) and

�(sdut) = �(vet) = �(ve) + 1 = �(du) < �(dut).

Moreover, ve = (sr)(udt) is the minimal length element in W{r,s}udt since, as noted
above, �(rve) > �(ve) and �(sve) > �(ve). Thus sr is the longest element of W{r,s},
and it follows that rs = sr. Thus rve = rsud = srud = sudt = vet, and since
t ∈ Iγ this shows that r ∈ I(ve, γ), contradicting our assumptions.

Proposition 5.7. Let J, K ⊆ S and let Γ be a WJ -graph. For each d ∈ DKJ , the
d-subgraph of ResS

K(IndS
J (Γ)) is a union of cells.

Proof. Let α be a vertex in the d-subgraph. We must prove that any vertex β
that is in the same cell of ResS

K(IndS
J (Γ)) as α is also in the d-subgraph. Recall

that the vertex set of ResS
K(IndS

J (Γ)) is the disjoint union of the vertex sets of its
e-subgraphs, as e runs through DKJ ; so β must lie in the e-subgraph for some
e ∈ DKJ .

Since α and β are in the same cell we have that α ≤ β and β ≤ α, where ≤ is the
Kazhdan-Lusztig preorder on ResS

K(IndS
J (Γ)). So there exists a sequence of vertices

α = α0, α1, α2, . . . , αn = β with αi−1 and αi adjacent and I(αi−1) � I(αi) for
1 � i � n, and another such sequence β = β0, β1, β2, . . . , βm = α with βj−1 and
βj adjacent and I(βj−1) � I(βj) for 1 � j � m.

Let αi lie in the di-subgraph and βi in the ej-subgraph, where di, ej ∈ DKJ

(for all i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , m}). Since αi−1 and αi are adjacent
and I(αi−1) � I(αi) the argument preceding this proposition shows that either
di−1 = di or �(di−1) < �(di). So �(di) � �(di−1), and di−1 � di in the Bruhat
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order. Thus it follows that d = d0 � e = dn. But the same reasoning applied to
the sequence of βj ’s gives e � d. Hence e = d, as required. �

We give an example to illustrate the distribution of WK -cells in ResS
K(IndS

J (Γ)).
Let W be the Weyl group of type D4, with generators r, s, t and u, where r, s, u
correspond to the end nodes of the Coxeter graph. Let J = {r, s, t} (of type A3)
and Γ the WJ -graph consisting of two vertices γ, δ such that Iγ = {r, s}, Iδ = {t}
and µ(δ, γ) = µ(γ, δ) = 1. Then DJ = {1, u, tu, rtu, stu, rstu, trstu, utrstu}. Let
K = {r, t, u}. Then there are two WK\W/WJ double cosets, with shortest elements
d1 = 1 and d2 = stu. We find that K ∩d1Jd1

−1 = {r, t} and K ∩d2Jd2
−1 = {u, t};

so we have DK
K∩d1Jd1

= {1, u, tu, rtu} and DK
K∩d2Jd2

−1 = {1, r, tr, utr}. The vertex
set of the d1-subgraph of ResS

K(IndS
J (Γ)) is

{(1, γ), (u, γ), (tu, γ), (rtu, γ), (1, δ), (u, δ), (tu, δ), (rtu, δ)}

and the vertex set of the d2-subgraph is

{(stu, γ), (rstu, γ), (trstu, γ), (utrstu, γ),

(stu, δ), (rstu, δ), (trstu, δ), (utrstu, δ)}.

The diagram below shows IndS
J (Γ) (on the left) and ResS

K(IndS
J (Γ)) (obtained by

removing s from all the descent sets of IndS
J (Γ)). The circles denote vertices of the

graphs, and the generators written inside a circle comprise the descent set of the
vertex. All edge weights are 1.

The W -graph IndS
J (Γ) has two cells of size 3, namely

{(1, γ), (1, δ), (u, δ)}
and

{(trstu, γ), (utrstu, γ), (utrstu, δ)},
with the remaining 10 vertices constituting a third cell. There are six cells in
ResS

K(IndS
J (Γ)), as follows:

{(1, γ), (1, δ), (u, δ)},
{(u, γ), (tu, γ)},

{(tu, δ), (rtu, γ), (rtu, δ)},
{(stu, γ), (stu, δ), (rstu, γ)},

{(rstu, δ), (trstu, δ)},
{(trstu, γ), (utrstu, γ), (utrstu, δ)}.

The first three of these are in the d1-subgraph, the other three in the d2-subgraph.
Observe that for every edge joining a vertex α of the d1-subgraph and a vertex β of
the d2-subgraph we have I(β) ⊆ I(α), in accordance with the results proved above
(since �(d2) � �(d1)).

s,r t

r,s,u u

t t,u

r,t r,u

s,t s,u

r,s r,s,u

1

u

tu

rtu

stu

rstu

γ δ

r t

r,u u

t t,u

r,t r,u

t u

r r,u

γ δ
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6. Connection with Kazhdan-Lusztig polynomials

The results of the preceding sections can be applied with J = φ (so that
WJ = {1}, the trivial subgroup of W ) and Γ the trivial WJ -graph consisting of
a single vertex (and no edges). In this case HJ � A and the HJ -module AΓ is
simply a 1-dimensional A-module. Note also that DJ = W .

Theorem 6.1. The algebra H has a unique basis {Cw | w ∈ W } such that
Cw = Cw for all w and Cw =

∑
y∈W py,wTy for some elements py,w ∈ A+ with the

following properties ::

(i) py,w = 0 if y � w;
(ii) pw,w = 1;
(iii) py,w has zero constant term if y �= w.

The polynomials py,w are related to the polynomials Py,w of [6] (the genuine
Kazhdan-Lusztig polynomials) by py,w(q) = (−q)�(w)−�(y)Py,w(q2). That is, to
get py,w from Py,w replace q by q2, apply the bar involution, and then multiply
by (−q)�(w)−�(y). The quantity µ(y, w), which is the coefficient of q

1
2 (�(w)−�(y)−1)

in Py,w, is the coefficient of q in (−1)�(w)−�(y)py,w. However, since Kazhdan and
Lusztig show that µy,w is nonzero only when �(w) − �(y) is odd, µ(y, w) is the
coefficient of q in −py,w.

The elements Cw form a W -graph basis for H , and Eq. (2.3a) of [6] (or Theo-
rem 1.4 above) shows the W -graph is ordered, in the sense of Definition 1.1, relative
to the Bruhat order on W .

Applying Theorem 6.1 with W replaced by WJ yields a WJ -graph basis for the
regular representation of HJ . The representation of H obtained by inducing the
regular representation of HJ is, of course, the regular representation of H . Apply-
ing our procedure for inducing W -graphs yields a W -graph basis for H consisting
of elements Cw,γ (for w ∈ DJ and γ ∈ WJ ) such that Cw,γ = Cw,γ and

(8) Cw,γ =
∑

y∈DJ

∑
δ∈WJ

Py,δ,w,γTyCδ,

where the polynomials Py,δ,w,γ satisfy the conditions given in Theorem (1.3). By
Proposition 2.2 there is a partial order on the set Λ = {Cw,γ | w ∈ DJ , γ ∈ WJ }
such that for all y, w ∈ DJ and δ, γ ∈ WJ ,

(i) if y � w and δ � γ then Cy,δ � Cw,γ ,
(ii) if Cy,δ � Cw,γ and if y, w ∈ D+

J,s for some s ∈ S, then Csy,δ � Csw,γ ,
(iii) if Cy,δ � Cw,γ with w ∈ D+

J,s and y ∈ D0
J,s for some s ∈ S, and if also

tδ > δ where t = y−1sy, then Cy,tδ � Csw,γ .

Furthermore, the partial order on Λ is defined to be the minimal partial order
satisfying these three properties.

Note that Λ is in bijective correspondence with W via Cw,γ ↔ wγ.

Proposition 6.2. The above partial order on Λ corresponds exactly the Bruhat
order on W , in the sense that Cy,δ � Cw,γ if and only if yδ � wγ in W .

Proof. Let us check first that the Bruhat order on W does satisfy the properties
(i), (ii) and (iii) above. With regard to (i), it is certainly true that y � w and δ � γ
implies that yδ � wγ. Turning to (ii), suppose that y, w ∈ D+

J,s and δ, γ ∈ WJ
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with yδ � wγ. Since w < sw ∈ DJ we see that

�(swγ) = �(sw) + �(γ) = 1 + �(w) + �(γ) = 1 + �(wγ),

and �(syδ) = 1 + �(yδ) similarly. So syδ � swγ, by Deodhar [2, Theorem 1.1].
For (iii), suppose that w ∈ D+

J,s and y ∈ D0
J,s, and let δ, γ ∈ WJ with yδ � wγ.

Suppose also that tδ > δ, where t = y−1sy ∈ J . Then

�(syδ) = �(ytδ) = �(y) + �(tδ) = 1 + �(y) + �(δ) = 1 + �(yδ),

and since also �(swγ) = 1 + �(wγ) as above, Deodhar [2, Theorem 1.1] again gives
the desired conclusion that ytδ = syδ � swγ.

Since the partial order on Λ is generated by the properties (i), (ii) and (iii),
and since also the Bruhat order on W satisfies the same properties, it follows that
Cy,δ � Cw,γ implies that yδ � wγ for all y, w ∈ DJ and δ, γ ∈ WJ .

We must show, conversely, that yδ � wγ implies that Cy,δ � Cw,γ . In view of
statement IV in [2, Theorem 1.1] it is sufficient to do this when �(wγ) = �(yδ) + 1.
Making this assumption, we argue by induction on �(w). Observe that if �(w) = 0
then wγ = γ ∈ WJ , and since yδ � wγ it follows that yδ ∈ WJ . Hence y = 1, and
Cy,δ � Cw,γ by Property (i). So suppose that �(w) > 0, and choose s ∈ S with
sw < w.

Consider first the possibility that syδ > yδ. Then we must in fact have syδ = wγ,
since, using the terminology of [2, Theorem 1.1], Property Z(s, syδ, wγ) implies that
syδ � wγ. So either sy = w and δ = γ, in which case Cy,δ � Cw,γ by Property (i),
or else y = w and γ = tδ, where t = y−1sy ∈ J , and again Property (i) gives
Cy,δ � Cw,γ .

The only alternative is that syδ < yδ, and in this case we have that syδ � swγ
(by Z(s, yδ, wγ), in Deodhar’s terminology). If y ∈ D−

J,s then the inductive hy-
pothesis yields that Csy,δ � Csw,γ , and Property (ii) gives Cy,δ � Cw,γ . Since
y ∈ D+

J,s is not possible given syδ < yδ, it remains to deal with the case y ∈ D0
J,s.

Writing t = y−1sy we have syδ = ytδ � swγ, and the inductive hypothesis gives
Cy,tδ � Csw,γ . Note that here tδ < δ and sw ∈ D+

J,s; so applying Property (iii) we
obtain the desired conclusion that Cy,δ � Cw,γ . �

Equation (8) and Theorem 6.1 give Cδ =
∑

θ∈WJ
pθ,δTθ, and we deduce that

Cw,γ =
∑

y∈DJ

∑
δ,θ∈WJ

Py,δ,w,γpθ,δTyθ,

since TyTθ = Tyθ for all y ∈ DJ and θ ∈ WJ . The coefficient of Tyθ in this
expression is

∑
δ∈WJ

Py,δ,w,γpθ,δ, and for this to be nonzero there must exist a
δ ∈ WJ such that Py,δ,w,γ and pθ,δ are both nonzero. Now pθ,δ �= 0 implies that
θ � δ by Theorem 6.1, and Py,δ,w,γ �= 0 gives yδ � wγ, by Propositions 2.2 and 6.2.
These combine to give yθ � yδ � wγ. So if the coefficient of Tyθ in Cw,γ is nonzero
then yθ � wγ. Furthermore, the coefficient is a polynomial in q whose constant
term is nonzero only if there exists a δ ∈ WJ such that Py,δ,w,γ and pθ,δ both have
nonzero constant terms. This only occurs when (y, δ) = (w, γ) and θ = δ; that is,
the constant term is nonzero only if yθ = wγ. Hence by the uniqueness assertion
in Theorem 1.3 we deduce that Cw,γ = Cwγ , and

(9) pyθ,wγ =
∑

δ∈WJ

Py,δ,w,γpθ,δ
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for all y, w ∈ DJ and θ, γ ∈ WJ .
Since the elements Cw,γ produced by our construction coincide with the elements

Cwγ of the Kazhdan-Lusztig construction, the W -graph data of our construction
must also agree with Kazhdan-Lusztig. So if yθ � wγ then µ(yθ, wγ), the coefficient
of q in −pyθ,wγ, must equal the element µ(y, θ, w, γ) of our construction. That is,
if y < w then µ(yθ, wγ) equals the coefficient of q in −Py,θ,w,γ, while if y = w then
it equals µ(θ, γ), which is the coefficient of q in −pθ,γ. Eq. (9) above confirms this.

References
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J. Alg. 213 (1999), 687–720.

[2] Vinay Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determi-
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