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Abstract. Let H be the Hecke algebra associated with a Coxeter group W .
Many interesting H -modules can be described using the concept of a W-graph,
as introduced in the influential paper [6] of Kazhdan and Lusztig. In particular,

Kazhdan and Lusztig showed that the regular representation of H has an
associated W-graph. In [5] it is shown that if WJ is a parabolic subgroup
of W and V is a module for the corresponding Hecke algebra HJ , then a WJ -

graph structure for V gives rise to a W-graph structure for the induced module
H ⊗HJ

V . In the case that WJ is the identity subgroup and V has dimension 1,
the construction coincides with that given by Kazhdan and Lusztig for the
regular representation, while for arbitrary J and V of dimension 1 it coincides
with constructions given by Couillens [1] and Deodhar [3]. The present paper
includes a minor reformulation of the results of [5] and some additional results;
notably, we describe how cells in the WJ -graph naturally give rise to subsets
of the induced W -graph that are unions of cells.

1. Preliminaries

Let W be a Coxeter group with S the set of simple reflections, and let H be
the corresponding Hecke algebra. We use a variation of the definition given in [6],
taking H to be an algebra over A = Z[q−1, q], the ring of Laurent polynomials
with integer coefficients in the indeterminate q, having an A-basis {Tw | w ∈ W }
satisfying

TsTw =

{
Tsw if `(sw) > `(w)

Tsw + (q − q−1)Tw if `(sw) < `(w),

for all w ∈ W and s ∈ S. We also define A+ = Z[q], the ring of polynomials in
q with integer coefficients, and let a 7→ a be the involutory automorphism of A
such that q = q−1. This involution on A extends to an involution on H satisfying
Ts = T−1

s = Ts + (q−1 − q) for all s ∈ S. This gives Tw = T−1
w−1 for all w ∈ W .

For each J ⊆ S define WJ = 〈J〉, the corresponding parabolic subgroup of W ,
and let DJ = {w ∈ W | `(ws) > `(w) for all s ∈ J }, the set of minimal coset
representatives of W/WJ . Let HJ be the Hecke algebra associated with WJ . As is
well known, HJ can be identified with a subalgebra of H .

2. Definition of W -graph

Modifying the definitions in [6] to suit our modified definition of the Hecke al-
gebra, a W-graph is a set Γ (the vertices of the graph) with a set Θ of two-element
subsets of Γ (the edges) together with the following additional data: for each vertex
γ we are given a subset Iγ of S, and for each ordered pair of vertices δ, γ we are
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given an integer µ(δ, γ) which is nonzero if and only if {δ, γ} ∈ Θ. These data are
subject to the requirement that AΓ, the free A-module on Γ, has an H -module
structure satisfying

(1) Tsγ =

−q−1γ if s ∈ Iγ

qγ +
∑

{δ∈Γ|s∈Iδ} µ(δ, γ)δ if s /∈ Iγ ,

for all s ∈ S and γ ∈ Γ. If τs is the A-endomorphism of AΓ such that τs(γ) is the
right-hand side of Eq. (1) then this requirement is equivalent to the condition that
for all s, t ∈ S such that st has finite order,

τsτtτs . . .︸ ︷︷ ︸
m factors

= τtτsτt . . .︸ ︷︷ ︸
m factors

where m is the order of st.
To avoid over-proliferation of symbols, we shall use the name of the vertex set

of a W-graph to also refer to the W-graph itself.
Given a W-graph Γ we define

Γ−s = { γ ∈ Γ | s ∈ Iγ },
Γ+

s = { γ ∈ Γ | s /∈ Iγ }.

Observe that the involution a 7→ a on A determines a semilinear involution v 7→ v
on AΓ with the property that γ = γ for all γ ∈ Γ. If s ∈ S and γ ∈ Γ then

Tsγ = Tsγ = Tsγ + (q−1 − q)γ;

thus if γ ∈ Γ−s it follows that

Tsγ = −q−1γ + (q−1 − q)γ = −qγ = Tsγ,

while if γ ∈ Γ+
s we find that

Tsγ =
(
qγ +

∑
δ∈Γ−s

µ(δ, γ)δ
)

+ (q−1 − q)γ

= q−1γ +
∑

δ∈Γ−s

µ(δ, γ)δ

= Tsγ.

Since H is generated by {Ts | s ∈ S }, the following proposition is an immediate
consequence of these calculations.

Proposition 2.1. If Γ is a W-graph then the associated H -module AΓ admits an
involution v 7→ v that fixes all elements of Γ and is compatible with the involution
h 7→ h of H , in the sense that hv = h v for all h ∈ H and v ∈ E.

For use in the final sections of this paper, we make the following definition.

Definition 2.2. An ordered W -graph set Γ with a W -graph structure and a partial
order 6 satisfying the following conditions:

(i) for all θ, γ ∈ Γ such that µ(θ, γ) 6= 0, either θ < γ or γ < θ;
(ii) for all s ∈ S and γ ∈ Γ+

s the set { θ ∈ Γ−s | γ < θ and µ(θ, γ) 6= 0 } is either
empty or consists of a single element sγ;

(iii) for all s ∈ S and γ ∈ Γ+
s , if sγ exists then µ(sγ, γ) = 1.
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3. Induced modules

Suppose now that Γ is a WJ -graph (so that AΓ is an HJ -module) and let M be
the H -module induced from the HJ -module AΓ. Thus, identifying AΓ with an
A-submodule of M in the obvious way, M has an A-basis {Tdγ | d ∈ DJ , γ ∈ Γ },
and we can define an involution on M by setting Tdγ = Tdγ for all d ∈ DJ and
γ ∈ Γ. Since T1 is the identity element of H this extends the involution on AΓ
described in Proposition 2.1, and clearly Tdv = Tdv for all d ∈ DJ and v ∈ AΓ.
Thus for all d ∈ DJ and u ∈ WJ we have

Tduγ = TdTuγ = Td(Tuγ) = Td(Tuγ) = Tdu γ (for all γ ∈ Γ),

and hence Tduv = Tduv for all v ∈ AΓ. Thus hv = h v for all h ∈ H and v ∈ AΓ,
and so we obtain the following result.

Proposition 3.1. The involution on M defined above is compatible with the invo-
lution on H .

Proof. Let h ∈ H and m ∈ M be arbitrary. Then m = kv for some k ∈ H and
v ∈ AΓ, and so

h m = h(kv) = h(k v) = (hk)v = hkv = hm,

as required. �

Our aim is to associate M with a W-graph by finding an appropriate basis of M .
In particular, elements of this W-graph basis will be fixed by the involution.

The following result is well known.

Lemma 3.2 (Deodhar [2, Lemma 3.2]). Let J ⊆ S and s ∈ S, and define

D−
J,s = { d ∈ DJ | `(sd) < `(d) },

D+
J,s = { d ∈ DJ | `(sd) > `(d) and sd ∈ DJ },

D0
J,s = { d ∈ DJ | `(sd) > `(d) and sd /∈ DJ },

so that DJ is the disjoint union D−
J,s ∪ D+

J,s ∪ D0
J,s. Then sD+

J,s = D−
J,s, and if

d ∈ D0
J,s then sd = dt for some t ∈ J .

4. The elements Rx,δ,y,γ

For all x, y ∈ DJ and γ, δ ∈ Γ we define elements Rx,δ,y,γ ∈ A by the formula

(2) Tyγ =
∑

x∈DJ , δ∈Γ

Rx,δ,y,γTxδ.

We begin by deriving formulas which provide an inductive procedure for calculating
these elements.

If y = 1 then Tyγ = γ, and hence

Rx,δ,1,γ =

{
1 if x = 1 and δ = γ

0 otherwise.

Suppose now that 1 6= y ∈ DJ , so that we may choose s ∈ S with `(sy) = `(y)− 1.
Then by Lemma 3.2 we have y = sv with v ∈ D+

J,s and `(y) = `(v) + 1, and

Tyγ = Ts(Tvγ) =
∑

x∈DJ , δ∈Γ

Rx,δ,v,γT−1
s Txδ.
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Each x in this expression lies in exactly one of the sets D+
J,s, D−

J,s or D0
J,s. When

x ∈ D0
J,s we write t = x−1sx (an element of J); in this case T−1

s Tx = TxT−1
t . When

x ∈ D−
J,s we have T−1

s Tx = Tsx, while x ∈ D+
J,s gives T−1

s Tx = Tsx + (q−1 − q)Tx.
Thus we obtain

Tyγ =
∑
δ∈Γ

∑
x∈D+

J,s

Rx,δ,v,γ(Tsx + (q−1 − q)Tx)δ

+
∑
δ∈Γ

∑
x∈D−J,s

Rx,δ,v,γTsxδ +
∑
δ∈Γ

∑
x∈D0

J,s

Rx,δ,v,γTxT−1
t δ

=
∑
δ∈Γ

∑
x∈D−J,s

Rsx,δ,v,γTxδ +
∑
δ∈Γ

∑
x∈D+

J,s

(q−1 − q)Rx,δ,v,γTxδ

+
∑
δ∈Γ

∑
x∈D+

J,s

Rsx,δ,v,γTxδ +
∑

x∈D0
J,s

∑
δ∈Γ−t

Rx,δ,v,γTxT−1
t δ

+
∑

x∈D0
J,s

∑
δ∈Γ+

t

Rx,δ,v,γTxT−1
t δ

=
∑
δ∈Γ

∑
x∈D−J,s

Rsx,δ,v,γTxδ +
∑
δ∈Γ

∑
x∈D+

J,s

(q−1 − q)Rx,δ,v,γTxδ

+
∑
δ∈Γ

∑
x∈D+

J,s

Rsx,δ,v,γTxδ −
∑

x∈D0
J,s

∑
δ∈Γ−t

qRx,δ,v,γTxδ

+
∑

x∈D0
J,s

∑
δ∈Γ+

t

Rx,δ,v,γTx

(
q−1δ +

∑
θ∈Γ−t

µ(θ, δ)θ
)

=
∑
δ∈Γ

∑
x∈D−J,s

Rsx,δ,v,γTxδ +
∑
δ∈Γ

∑
x∈D+

J,s

(q−1 − q)Rx,δ,v,γTxδ

+
∑
δ∈Γ

∑
x∈D+

J,s

Rsx,δ,v,γTxδ −
∑

x∈D0
J,s

∑
δ∈Γ−t

qRx,δ,v,γTxδ

+
∑

x∈D0
J,s

∑
δ∈Γ+

t

q−1Rx,δ,v,γTxδ +
∑

x∈D0
J,s

∑
θ∈Γ+

t

∑
δ∈Γ−t

µ(δ, θ)Rx,θ,v,γTxδ.

Comparing this with Eq. (2) gives us the following result.

Proposition 4.1. Let γ, δ ∈ Γ and x, y ∈ DJ . If s ∈ S is such that `(sy) < `(y)
then

Rx,δ,y,γ =



Rsx,δ,sy,γ if x ∈ D−
J,s

Rsx,δ,sy,γ + (q−1 − q)Rx,δ,sy,γ if x ∈ D+
J,s

q−1Rx,δ,sy,γ if x ∈ D0
J,s and δ ∈ Γ+

t

−qRx,δ,sy,γ +
∑

θ∈Γ+
t

µ(δ, θ)Rx,θ,sy,γ if x ∈ D0
J,s and δ ∈ Γ−t ,

where t = x−1sx.

We can use induction on `(y) to establish that Rx,δ,y,γ = 0 unless x 6 y in the
Bruhat partial order on W ; this follows from the fact that if sy 6 y and x 6 sy
then both x 6 y and sx 6 y (see Deodhar [2, Theorem 1.1]). It is also easily seen
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that

Rx,δ,x,γ =

{
1 if δ = γ

0 if δ 6= γ,

and if `(y) − `(x) = k then the coefficient of qj in Rx,δ,y,γ is zero for |j| > k, and
also zero for |j| = k if δ 6= γ.

5. The construction of the W-graph basis

As is the preceding section, we assume that Γ is a WJ -graph and M the induced
H -module.

Theorem 5.1. The module M has a unique basis {Cw,γ | w ∈ DJ , γ ∈ Γ } such
that Cw,γ = Cw,γ for all w ∈ DJ and γ ∈ Γ, and

Cw,γ =
∑

y∈DJ ,δ∈Γ

Py,δ,w,γTyδ

for some elements Py,δ,w,γ ∈ A+ with the following properties:

(i) Py,δ,w,γ = 0 if y 
 w;

(ii) Pw,δ,w,γ =

{
1 if δ = γ,
0 if δ 6= γ;

(iii) Py,δ,w,γ has zero constant term if (y, δ) 6= (w, γ).

We shall show that the basis elements Cw,γ can be identified with the vertices
of a W-graph for the module M ; we shall denote this W-graph by Λ. Before giving
the proof of Theorem 5.1, we describe the additional data associated with Λ.

Given y, w ∈ DJ and δ, γ ∈ Γ with (y, δ) 6= (w, γ), we define an integer
µ(y, δ, w, γ) as follows. If y < w then µ(y, δ, w, γ) is the coefficient of q in −Py,δ,w,γ ,
and if w < y then it is the coefficient of q in −Pw,γ,y,δ. If neither y < w nor w < y
then

µ(y, δ, w, γ) =

{
µ(δ, γ) if y = w,
0 if y 6= w.

We write (y, δ) ≺ (w, γ) if y < w and µ(y, δ, w, γ) 6= 0.
The subset of S associated with the vertex Cw,γ of Λ is

I(w, γ) = { s ∈ S | `(sw) < `(w) or sw = wt for some t ∈ Iγ }

and the integer associated with the pair of vertices (Cy,δ, Cw,γ) is µ(y, δ, w, γ) (as
defined above). Thus {Cy,δ, Cw,γ} is an edge of Λ if and only if µ(y, δ, w, γ) 6= 0,
and this occurs if and only if either (y, δ) ≺ (w, γ) or (w, γ) ≺ (y, δ), or y = w and
{δ, γ} is an edge of Γ.

Modifying slightly the notation introduced in Section 2, we define

Λ−
s = { (w, γ) ∈ DJ × Γ | s ∈ I(w, γ) }

= { (w, γ) | w ∈ D−
J,s or w ∈ D0

J,s with t ∈ Iγ },

and similarly Λ+
s = { (w, γ) ∈ DJ × Γ | s /∈ I(w, γ) }.

Our proof of Theorem 5.1 will also incorporate a proof of the following result,
which will be an important component of the subsequent proof that Λ is a W-graph.
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Theorem 5.2. Let v ∈ DJ and γ ∈ Γ. Then for all s ∈ S such that `(sv) > `(v)
and sv ∈ DJ we have

TsCv,γ = qCv,γ + Csv,γ +
∑

µ(z, δ, v, γ)Cz,δ,

where the sum is over all (z, δ) ∈ Λ−
s such that (z, δ) ≺ (v, γ).

Proof. We address the uniqueness part of Theorem 5.1 first. Fix w ∈ DJ and γ ∈ Γ,
and observe that the equation Cw,γ = Cw,γ can be written in the form∑

x∈DJ
δ∈Γ

Px,δ,w,γTxδ =
∑

y∈DJ
θ∈Γ

Py,θ,w,γ

∑
x∈DJ
δ∈Γ

Rx,δ,y,θTxδ,

or, equivalently, as

Px,δ,w,γ =
∑

y∈DJ

∑
θ∈Γ

Py,θ,w,γRx,δ,y,θ

for all x ∈ DJ and δ ∈ Γ. Recall that Rx,δ,x,δ = 1, and if (y, θ) 6= x, δ) then
Rx,δ,y,θ = 0 unless x < y. Since also Py,θ,w,γ is required to be zero unless y 6 w,
we obtain

(3) Px,δ,w,γ − Px,δ,w,γ =
∑

{y,θ |x<y6w}

Py,θ,w,γRx,δ,y,θ.

Conditions (ii) and (iii) in Theorem 5.1 specify the elements Px,δ,w,γ when x = w,
and in view of Condition (iii) they are then recursively determined for x < w by
Eq. (3): the point is that the right hand side is known by the inductive hypothesis,
and since Px,δ,w,γ is required to be in A+ and have zero constant term it must
equal the sum of the terms on the right hand side of Eq. (3) with positive exponent
of q. So there is at most one family of elements Px,δ,w,γ satisfying the required
conditions.

Turning now to the existence part of the proof, we give a recursive procedure
for constructing elements Px,δ,w,γ satisfying the requirements of Theorem 5.1. We
start with the definition

Py,δ,1,γ =

{
0 if (y, δ) 6= (1, γ),
1 if (y, δ) = (1, γ).

for all y ∈ DJ and γ, δ ∈ Γ. This gives C1,γ = γ, so that Cw,γ = Cw,γ holds
for w = 1, as do Conditions (i), (ii) and (iii).

Now assume that w 6= 1 and that for all v ∈ DJ with `(v) < `(w) the elements
Px,δ,v,γ have been defined (for all x ∈ DJ and γ, δ ∈ Γ) so that the requirements
of Theorem 5.1 are satisfied. Thus the elements Cv,γ are known when `(v) < `(w).
We may choose s ∈ S such that w = sv with `(w) = `(v) + 1; note that v ∈ DJ by
Lemma 3.2. In accordance with the formula in Theorem 5.2 we define

(4) Cw,γ = (Ts − q)Cv,γ −
∑

(z,θ)≺(v,γ)

(z,θ)∈Λ−s

µ(z, θ, v, γ)Cz,θ.
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Since Ts − q = Ts−q, induction immediately gives Cw,γ = Cw,γ . We define P ′
y,δ,w,γ

and P ′′
y,δ,w,γ by

(Ts − q)Cv,γ =
∑

y∈DJ
δ∈Γ

P ′
y,δ,w,γTyδ(5)

∑
(z,θ)≺(v,γ)

(z,θ)∈Λ−s

µ(z, θ, v, γ)Cz,θ =
∑

y∈DJ
δ∈Γ

P ′′
y,δ,w,γTyδ(6)

and define Py,δ,w,γ = P ′
y,δ,w,γ − P ′′

y,δ,w,γ .
If y ∈ DJ then

(Ts − q)Ty =


Tsy − qTy if y ∈ D+

J,s

Tsy − q−1Ty if y ∈ D−
J,s

Ty(Tt − q) if y ∈ D0
J,s

where we have written t = y−1sy ∈ J in the case y ∈ D0
J,s. Thus we see that

(Ts − q)Cv,γ =
∑

y∈D+
J,s

δ∈Γ

Py,δ,v,γ(Tsy − qTy)δ +
∑

y∈D−J,s

δ∈Γ

Py,δ,v,γ(Tsy − q−1Ty)δ

+
∑

y∈D0
J,s

δ∈Γ

Py,δ,v,γTy(Tt − q)δ

=
∑

y∈D−J,s

δ∈Γ

(Psy,δ,v,γ − q−1Py,δ,v,γ)Tyδ +
∑

y∈D+
J,s

δ∈Γ

(Psy,δ,v,γ − qPy,δ,v,γ)Tyδ

+
∑

y∈D0
J,s

θ∈Γ

Py,θ,v,γTy(Tt − q)θ.

Now for all t ∈ J and θ ∈ Γ,

(Tt − q)θ =


(−q − q−1)θ if θ ∈ Γ−t∑
δ∈Γ−t

µ(δ, θ)δ if θ ∈ Γ+
t ,

and therefore∑
θ∈Γ

Py,θ,v,γTy(Tt − q)θ =
∑

θ∈Γ−t

(−q − q−1)Py,θ,v,γTyθ +
∑

θ∈Γ+
t

δ∈Γ−t

µ(δ, θ)Py,θ,v,γTyδ

=
∑

δ∈Γ−t

(
(−q − q−1)Py,δ,v,γ +

∑
θ∈Γ+

t

µ(δ, θ)Py,θ,v,γ

)
Tyδ.
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Now comparing Eq. (5) with the expression for (Ts − q)Cv,γ obtained above we
obtain the following formulas:

(7) P ′
y,δ,w,γ =



Psy,δ,v,γ − qPy,δ,v,γ if y ∈ D+
J,s,

Psy,δ,v,γ − q−1Py,δ,v,γ if y ∈ D−
J,s,

(−q − q−1)Py,δ,v,γ +
∑

θ∈Γ+
t

µ(δ, θ)Py,θ,v,γ if y ∈ D0
J,s and δ ∈ Γ−t ,

0 if y ∈ D0
J,s and δ ∈ Γ+

t .

Since Cz,θ =
∑

y,δ Py,δ,z,θTyδ, we have∑
(z,θ)≺(v,γ)

(z,θ)∈Λ−s

µ(z, θ, v, γ)Cz,θ =
∑

y∈DJ
δ∈Γ

∑
(z,θ)≺(v,γ)

(z,θ)∈Λ−s

µ(z, θ, v, γ)Py,δ,z,θTyδ

and by comparison with Eq. (6)

(8) P ′′
y,δ,w,γ =

∑
(z,θ)≺(v,γ)

(z,θ)∈Λ−s

µ(z, θ, v, γ)Py,δ,z,θ.

We must check that with P ′
y,δ,w,γ and P ′′

y,δ,w,γ given by Eq’s (7) and (8), the elements
Py,δ,w,γ = P ′

y,δ,w,γ − P ′′
y,δ,w,γ lie in A+ and satisfy Conditions (i), (ii) and (iii) of

Theorem 5.1.
In the second and third cases of Eq. (7), observe that y /∈ Γ+

t whereas v ∈ Γ+
t .

Hence y 6= v, and the inductive hypothesis guarantees that Py,δ,v,γ is an element of
A+ with zero constant term; so q−1Py,δ,v,γ ∈ A+. It follows that P ′

y,δ,w,γ ∈ A+ in
all cases, and since also P ′′

y,δ,w,γ ∈ A+ we deduce that Py,δ,w,γ ∈ A+.
With regard to Condition (i), the inductive hypothesis tells us that the right

hand side of Eq. (7) is nonzero only if y 6 v or sy 6 v. Since w = sv with
`(w) = `(v) + 1, both of these conditions imply that y 6 w. Hence P ′

y,δ,w,γ = 0
unless y 6 w. Similarly, the right hand side of Eq. (8) is nonzero only if y 6 z for
some z < w; so P ′′

y,δ,w,γ = 0 unless y < w. Hence Condition (i) is satisfied.
The above remarks show, in particular, that P ′′

w,δ,w,γ = 0 in all cases. Since
w 
 v we see that Pw,δ,v,γ = 0, and since w ∈ D−

J,s (by the choice of s) the second
case in Eq. (7) gives

Pw,δ,w,γ = P ′
w,δ,w,γ = Pv,δ,v,γ =

{
1 if δ = γ

0 if δ 6= γ.

Hence Condition (ii) is satisfied.
It remains to check that Condition (iii) is satisfied. We may assume that y < w,

since otherwise the required conclusion follows from Conditions (i) and (ii).
So suppose that y < w, and consider first the case that y ∈ D+

J,s. Then
(z, θ) = (y, δ) is not permitted in the sum in Eq. (8), since (z, θ) ∈ Λ−

s implies
that z /∈ D+

J,s. Hence all the summands have zero constant term (by the induc-
tive hypothesis), and so P ′′

y,δ,w,γ has zero constant term. Furthermore, y 6= w

gives sy 6= v; so Psy,δ,v,γ has zero constant term, and hence so does P ′
y,δ,w,γ . So

Condition (iii) holds in this case.
Next, suppose that y ∈ D−

J,s and (y, δ) ⊀ (v, γ). In this case it is again true
that (z, θ) = (y, δ) cannot occur in Eq. (8), and so P ′′

y,δ,w,γ has zero constant term.
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Furthermore, (y, δ) ⊀ (v, γ) also implies that the coefficient of q in Py,δ,v,γ is zero,
whence q−1Py,δ,v,γ has zero constant term. Again Psy,δ,v,γ has zero constant term
since sy 6= v; so P ′

y,δ,w,γ has zero constant term, and the desired conclusion follows.
If y ∈ D−

J,s and (y, δ) ≺ (v, γ) then (z, θ) = (y, δ) does arise in Eq. (8). Since
Py,δ,y,δ = 1, the corresponding summand is exactly µ(y, δ, v, γ). Since all the other
summands have zero constant term it follows that the constant term of P ′′

y,δ,w,γ

is µ(y, δ, v, γ). This is also the constant term of P ′
y,δ,w,γ , since µ(y, δ, v, γ) is the

coefficient of q in −Py,δ,v,γ while Psy,δ,v,γ has zero constant term. So Py,δ,w,γ has
zero constant term.

Finally, suppose that y ∈ D0
J,s. If δ ∈ Γ+

t —that is, t /∈ Iδ—then (y, δ) /∈ Λ−
s , and

so (z, θ) = (y, δ) is not allowed in Eq. (8). Hence P ′′
y,δ,w,γ has zero constant term.

Since in this case we also have that P ′
y,δ,w,γ = 0, the desired conclusion follows.

So it remains to consider δ ∈ Γ−t . In this case (z, θ) = (y, δ) occurs in Eq. (8) if
and only if (y, δ) ≺ (v, γ). So, as above, we see that P ′′

y,δ,w,γ has constant term
µ(y, δ, v, γ) if (y, δ) ≺ (v, γ), and zero in the other case. Turning to P ′

y,δ,w,γ , we see
that the summands µ(δ, θ)Py,θ,v,γ all have zero constant term, while the constant
term of (−q − q−1)Py,δ,v,γ is the coefficient of q in Py,δ,v,γ , which is µ(y, δ, v, γ) if
(y, δ) ≺ (v, γ) and zero otherwise. So Py,δ,w,γ = P ′

y,δ,w,γ−P ′′
y,δ,w,γ has zero constant

term in either case, as required. �

Observe that the formula for Cw,γ in Theorem 5.1 may be written as

Cw,γ = Twγ +
∑

{y,δ|y<w}

Py,δ,w,γTyδ,

and inverting this gives

(9) Twγ = Cw,γ +
∑

{y,δ|y<w}

Qy,δ,w,γCy,δ

where the elements Qy,δ,w,γ (defined whenever y < w) are given recursively by

Qy,δ,w,γ = −Py,δ,w,γ −
∑

{z,θ|y<z<w}

Qy,δ,z,θPz,θ,w,γ .

In particular, Qy,δ,w,γ is in A+, has zero constant term, and has coefficient of q
equal to µ(y, δ, w, γ).

We now state the main result of this paper.

Theorem 5.3. The elements Cw,γ give M a W-graph structure, as described above.

Proof. For all (z, θ), (w, γ) ∈ DJ × Γ we define

ξ(z, θ, w, γ) =


µ(z, θ, w, γ) if (z, θ) ≺ (w, γ) or z = w,
1 if (z, θ) = (rw, γ) and `(z) > `(w) for some r ∈ S,
0 otherwise.

We start by using induction on `(w) to prove that for all s ∈ S

(10) TsCw,γ =

−q−1Cw,γ if (w, γ) ∈ Λ−
s ,

qCw,γ +
∑

(z,θ)∈Λ−s

ξ(z, θ, w, γ)Cz,θ if (w, γ) /∈ Λ−
s .
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If w ∈ D+
J,s then (w, γ) /∈ Λ−

s , and Eq. (10) follows immediately from Theorem 5.2
(applied with v replaced by w), since the only (z, θ) ∈ Λ−

s with ξ(z, θ, w, γ) 6= 0 and
`(z) > `(w) is (z, θ) = (sw, γ).

If w ∈ D−
J,s, which implies that (w, γ) ∈ Λ−

s , then writing v = sw and applying
Theorem 5.2 gives

Cw,γ = (Ts − q)Cv,γ −
∑

µ(z, δ, v, γ)Cz,δ,

where (z, δ) ≺ (v, γ) and (z, δ) ∈ Λ−
s for all terms in the sum. The inductive

hypothesis thus gives TsCz,δ = −Cz,δ, and since also Ts(Ts − q) = −q−1(Ts − q) it
follows that TsCw,γ = −q−1Cw,γ , as required.

Now suppose that w ∈ D0
J,s, and as usual let us write sw = wt, where t ∈ J .

Suppose first that t ∈ Iγ , so that (w, γ) ∈ Λ−
s . By Eq. (9) above,

Cw,γ = Twγ −
∑

{y,δ|y<w}

Qy,δ,w,γCy,δ,

and since TsTwγ + q−1Twγ = Tw(Ttγ + q−1γ) = 0 we find that

(11) TsCw,γ + q−1Cw,γ = −
∑

{y,δ|y<w}

Qy,δ,w,γ(TsCy,δ + q−1Cy,δ).

By the inductive hypothesis,

TsCy,δ + q−1Cy,δ =

0 if (y, δ) ∈ Λ−
s

(q + q−1)Cy,δ +
∑

(z,θ)∈Λ−s

ξ(z, θ, y, δ)Cz,θ if (y, δ) /∈ Λ−
s ,

and so Eq. (11) gives

(12) TsCw,γ + q−1Cw,γ = −
∑

(y,δ)/∈Λ−s
y<w

Qy,δ,w,γ(q + q−1)Cy,δ + X

for some X in the A-module spanned by the elements Cz,θ for (z, θ) ∈ Λ−
s . Now

since Ts = T−1
s + (q − q−1) it follows that

(Ts + q−1)Cw,γ = (Ts + q−1)Cw,γ

= −
∑

(y,δ)/∈Λ−s
y<w

Qy,δ,w,γ(q−1 + q)Cy,δ + X,

and comparing with Eq. (12) shows that for all (y, δ) with y < w and (y, δ) /∈ Λ−
s ,

(13) Qy,δ,w,γ = Qy,δ,w,γ .

Since Qy,δ,w,γ is in A+ and has zero constant term, Eq. (13) forces Qy,δ,w,γ = 0
whenever y < w and (y, δ) /∈ Λ−

s . Thus the right hand side of Eq. (11) is zero, since
TsCy,δ + Cy,δ = 0 whenever (y, δ) ∈ Λ−

s . So

TsCw,γ = −q−1Cw,γ ,

as required.
Now suppose that t /∈ Iγ , so that (w, γ) /∈ Λ−

s . Replacing γ by θ in Eq. (9) we
obtain

Cw,θ = Twθ −
∑

{y,δ|y<w}

Qy,δ,w,θCy,δ,
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for all θ ∈ Γ. It follows that

(14) (Ts − q)Cw,γ −
∑

θ∈Γ−t

µ(θ, γ)Cw,θ

is the sum of

(15) (Ts − q)Twγ −
∑

θ∈Γ−t

µ(θ, γ)Twθ

and
−

∑
{y,δ|y<w}

(
Qy,δ,w,γ(Ts − q)Cy,δ −

∑
θ∈Γ−t

µ(θ, γ)Qy,δ,w,θCy,δ

)
.

Using the inductive hypothesis to evaluate (Ts− q)Cy,δ, this last expression can be
written as the sum of the following three terms:

−
∑

(y,δ)∈Λ+
s

y<w

∑
(z,θ)∈Λ−s

Qy,δ,w,γξ(z, θ, y, δ)Cz,θ,(16)

∑
(y,δ)∈Λ−s

y<w

Qy,δ,w,γ(q−1 + q)Cy,δ,(17)

∑
{y,δ)|y<w}

θ∈Γ−t

µ(θ, γ)Qy,δ,w,θCy,δ.(18)

Now the expression (15) is zero, since

(Ts − q)Twγ −
∑

θ∈Γ−t

µ(θ, γ)Twθ = Tw

(
Ttγ − qγ −

∑
θ∈Γ−t

µ(θ, γ)θ
)
,

and t /∈ Iγ . Observe that the coefficient of each Cy,δ in the sum of the expressions
(16), (17) and (18) is in A+, and the only contributions to the constant terms of
these coefficients come from (17) when (y, δ) ≺ (w, γ). However, the expression
(14) is invariant under the involution m 7→ m; hence the total coefficient of each
Cy,δ in the sum of (16), (17) and (18) must be a constant (since no other elements
of A+ are invariant under the involution). So we conclude that

(Ts − q)Cw,γ −
∑

θ∈Γ−t

µ(θ, γ)Cw,θ =
∑

(y,δ)∈Λ−s
(y,δ)≺(w,γ)

µ(y, δ, w, γ)Cy,δ.

Since µ(θ, γ) = µ(w, θ, w, γ), and the condition θ ∈ Γ−t is equivalent to (w, θ) ∈ Λ−
s ,

this may be rewritten as

TsCw,γ = qCw,γ +
∑

µ(y, δ, w, γ)Cy,δ.

where the sum is over all (y, δ) ∈ Λ−
s such that (y, δ) ≺ (w, γ) or y = w. To deduce

that Eq. (10) holds, it remains to check that that there is no z ∈ DJ such that
(z, γ) ∈ Λ−

s and `(z) = `(w) + 1, with z = rw for some r ∈ S.
Clearly these conditions cannot hold with r = s, as sw /∈ DJ ; so we may suppose

that r 6= s. Now (z, γ) ∈ Λ−
s implies that either `(sz) < `(z) or sz = zu for some

u ∈ Iγ . In the former case we would have both `(sz) < `(z) and `(rz) < `(z),
implying that `(srz) = `(z) − 2, a contradiction since srz = rzt and rz ∈ DJ .
The other case gives a similar contradiction, since `(s(zu)) = `(z) < `(zu) and
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`(r(zu)) = `(wu) < `(zu), whereas the length of srzu = rztu is greater than or
equal to `(rz), and hence is not `(zu)− 2.

We have now completed the proof of Eq. (10), and to complete the proof of The-
orem 5.3 it remains to show that for all s ∈ S we have ξ(z, θ, w, γ) = µ(z, θ, w, γ)
whenever (z, θ) ∈ Λ−

s and (w, γ) /∈ Λ−
s . This is true by definition whenever

`(z) 6 `(w), both sides being zero unless (z, θ) ≺ (w, γ) or z = w. If `(z) > `(w)
then both sides are zero unless (w, γ) ≺ (z, θ).

So we must show that (w, γ) ≺ (z, θ) with (z, θ) ∈ Λ−
s and (w, γ) /∈ Λ−

s implies
that (z, θ) = (rw, γ), where r ∈ S and `(z) = `(w) + 1, and µ(z, θ, w, γ) = 1. In
fact we shall show that this holds with r = s (which is the only possibility, as could
be shown directly by an argument similar to the one used above).

Since (z, θ) ∈ Λ−
s we have that TsCz,θ = −Cz,θ, whence

(19)
∑

y∈DJ ,δ∈Γ

Py,δ,z,θTsTyδ = −
∑

y∈DJ ,δ∈Γ

Py,δ,z,θTyδ.

If w ∈ D0
J,s, so that (w, γ) /∈ Λ−

s gives γ /∈ Γ−t (where t = w−1sw), then comparing
the coefficients of Twγ gives Pw,γ,z,θ = 0 (since TsTwγ = TwTtγ = qTwγ + X,
where X is a combination of terms of the form Twδ with δ ∈ Γ−t ). This contradicts
(w, γ) ≺ (z, θ). The only alternative is w ∈ D+

J,s, and in this case comparison of
the coefficients of Tswγ on the two sides of Eq. (19) gives

(q − q−1)Psw,γ,z,θ + Pw,γ,z,θ = −q−1Psw,γ,z,θ,

which reduces to
qPsw,γ,z,θ = −Pw,γ,z,θ.

Since (w, γ) ≺ (z, θ) the coefficient of q in Pw,γ,z,θ is nonzero; so the constant term of
Psw,γ,z,θ is nonzero. So (sw, γ) = (z, θ) and −Pw,γ,z,θ = q, whence µ(w, γ, z, θ) = 1,
as required. �

It is convenient to distinguish three kinds of edges of the W -graph Λ. Firstly,
there is an edge from the vertex Cw,γ to the vertex Cw,δ whenever there is an edge
from γ to δ in Γ. We call these horizontal edges. Next, if s ∈ S and w is in either
D+

J,s or D−
J,s then there is an edge joining Cw,γ and Csw,γ . We call these vertical

edges. All other edges are called transverse.

Proposition 5.4. Suppose that vertices Cw,γ and Cz,θ of Λ are joined by a trans-
verse edge, and suppose that `(w) 6 `(z). Then I(z, θ) ⊆ I(w, γ).

Proof. Let s ∈ I(z, θ), and suppose, for a contradiction, that s /∈ I(w, γ). Since
the edge is not horizontal we have either (w, γ) ≺ (z, θ) or (z, θ) ≺ (w, γ), and
the assumption `(w) 6 `(z) means that the former alternative holds. So we have
(w, γ) ≺ (z, θ), with (z, θ) ∈ Λ−

s and (w, γ) ∈ Λ+
s . We showed in the course of the

previous proof that these conditions imply that (z, θ) = (sw, γ). This means that
the edge {Cw,γ , Cz,θ} is vertical rather than transverse, and so we have the desired
contradiction. �

Proposition 5.5. Suppose that the WJ -graph Γ admits a partial order 6 satisfying
the conditions of Definition 2.2. Then the induced W -graph Λ admits a partial order
6 satisfying Definition 2.2 and having the following properties:

(i) if δ, γ ∈ Γ and y, w ∈ DJ are such that y 6 w and δ 6 γ, then Cy,δ 6 Cw,γ ;
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(ii) if δ, γ ∈ Γ and y, w ∈ D+
J,s for some s ∈ S, then Cy,δ 6 Cw,γ implies that

Csy,δ 6 Csw,γ ;
(iii) if y ∈ D0

J,s and w ∈ D+
J,s for some s ∈ S, then Cy,δ 6 Cw,γ implies

that Cy,tδ 6 Csw,γ , for all γ ∈ Γ and δ ∈ Γ+
t such that tδ exists, where

t = y−1sy;
(iv) if (y, δ), (w, γ) ∈ DJ × Γ satisfy Py,δ,w,γ 6= 0 then Cy,δ 6 Cw,γ .

Proof. We define 6 on Λ to be the minimal transitive relation satisfying the re-
quirements (i), (ii) and (iii). It is clear that Cy,δ 6 Cw,γ implies that y 6 w, with
equality only if δ 6 γ. Hence the fact that the relation 6 on Γ is antisymmetric
implies the same for the relation 6 on Λ.

We prove first that Condition (iv) is satisfied, using induction on `(w). In the
case `(w) = 0 the assumption that Py,δ,w,γ 6= 0 forces (y, δ) = (w, γ), and so
Cy,δ 6 Cw,γ . So suppose that `(w) > 0, and choose s ∈ S with `(sw) < `(w).
Recall that Py,δ,w,γ = P ′

y,δ,w,γ − P ′′
y,δ,w,γ ; hence either P ′′

y,δ,w,γ 6= 0 or P ′
y,δ,w,γ 6= 0.

If P ′′
y,δ,w,γ 6= 0 then by Eq. (8) there exists a pair (z, θ) with (z, θ) ≺ (sw, γ)

and Py,δ,z,θ 6= 0. The inductive hypothesis then yields both Cy,δ 6 Cz,θ and
Cz,θ 6 Csw,γ , and since also Csw,γ 6 Cw,γ it follows that Cy,δ 6 Cw,γ , as required.
So we may assume that P ′

y,δ,w,γ 6= 0.
Suppose first that y ∈ D+

J,s. By Eq. (7) either Py,δ,sw,γ 6= 0 or Psy,δ,sw,γ 6= 0,
and so the inductive hypothesis yields that either Cy,δ 6 Csw,γ or Csy,δ 6 Csw,γ .
Since Cy,δ 6 Csy,δ we obtain Cy,δ 6 Csw,γ in either case, and hence Cy,δ 6 Cw,γ .

Now suppose that y ∈ D−
J,s. Again Eq. (7) and the inductive hypothesis combine

to yield that either Cy,δ 6 Csw,γ or Csy,δ 6 Csw,γ . The former alternative yields
Cy,δ 6 Cw,γ as in the previous cases, while the latter alternative yields the same
result since (ii) above holds.

Finally, suppose that y ∈ D0
J,s, and let t = y−1sy ∈ J . By Eq. (7) we see that

either Py,δ,sw,γ 6= 0, which yields Cy,δ 6 Cw,γ as in the previous cases, or else
δ ∈ Γ−t and µ(δ, θ)Py,θ,sw,γ 6= 0 for some θ ∈ Γ+

t . Thus {θ, δ} is an edge of Γ with
t ∈ Iδ and t /∈ Iθ, and by Conditions (i), (ii) of Definition 2.2 it follows that either
δ = tθ or δ 6 θ. Moreover, since Py,θ,sw,γ 6= 0 the inductive hypothesis yields that
Cy,θ 6 Csw,γ . If δ 6 θ then Cy,δ 6 Cy,θ, and so Cy,δ 6 Csw,γ 6 Cw,γ . If δ = tθ
then Cy,δ 6 Cw,γ follows from Cy,θ 6 Csw,γ , in view of (iii) above.

It remains to show that Λ is an ordered W -graph in the sense of Definition 2.2.
Let Cy,δ, Cw,γ ∈ Λ with µ(y, δ, w, γ) 6= 0. If y = w then µ(y, δ, w, γ) = µ(δ, γ),

and since Γ is an ordered WJ -graph it follows that γ and δ are comparable, whence
so are (w, γ) and (w, δ) = (y, δ). If y 6= w then µ(y, δ, w, γ) is a coefficient of one or
other of the polynomials Py,δ,w,γ and Pw,γ,y,δ, and so (iv) above implies that (w, γ)
and (y, δ) are comparable. So Condition (i) of Definition 2.2 holds.

Let s ∈ S and (w, γ) ∈ Λ+
s , and suppose that (y, δ) ∈ Λ−

s with Cw,γ < Cy,δ and
µ(y, δ, w, γ) 6= 0. We must show that (y, δ) is the unique such element of Λ−

s .
Suppose first that the edge {Cy,δ, Cw,γ} is transverse. Since s ∈ I(y, δ) and

s /∈ I(w, γ), it follows from Proposition 5.4 that `(w) 66 `(y), and so (y, δ) ≺ (w, γ).
But this implies that Py,δ,w,γ 6= 0, and in view of (iv) this contradicts the assump-
tion that Cw,γ < Cy,δ. So {Cy,δ, Cw,γ} is either vertical or horizontal.

If the edge {Cy,δ, Cw,γ} is vertical then δ = γ and y = rw for some r ∈ S.
Since Cw,γ < Cy,γ we have w 6 y; so `(w) 6 `(rw). Now since s ∈ I(rw, γ) and
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s /∈ I(w, γ) it follows readily that r = s. So (y, δ) = (sw, γ); moreover, this case
can only arise if w ∈ D+

J,s.
Now suppose that {Cy,δ, Cw,γ} is horizontal, so that y = w and {δ, γ} is an edge

of Γ. Since Γ is an ordered WJ -graph, Condition (i) of Definition 2.2 yields that
either γ < δ or δ < γ; however, the latter alternative would give Cw,δ < Cw,γ ,
contradicting our assumption that Cw,γ < Cy,δ = Cw,δ. Now since s ∈ I(w, δ) and
s /∈ I(w, γ) we see that w ∈ D0

J,s, and t = w−1sw is in Iδ and not in Iγ . Since Γ
satisfies Condition (ii) of Definition 2.2 it follows that δ = tγ.

We have shown that

(y, δ) =

{
(sw, γ) if w ∈ D+

J,s

(w, tγ) if w ∈ D0
J,s

where t = w−1sw. So (y, δ) is uniquely determined. In accordance with Defini-
tion 2.2, we write Cy,δ = sCw,γ .

It remains to check that Λ satisfies Condition (iii) of Definition 2.2; that is, we
must show that if (w, γ) ∈ Λ+

s and Cy,δ = sCw,γ then µ(y, δ, s, γ) = 1. If w ∈ D0
J,s

with w−1sw = t then sCw,γ is defined if and only if tγ is defined, in which case
sCw,γ = Cw,tγ . Moreover, in this case we have that µ(w, tγ, w, γ) = µ(tγ, γ) = 1,
since Γ satisfies Condition (iii) of Definition 2.2. On the other hand, if w ∈ D+

J,s

then s(w, γ) = (sw, γ), and the desired conclusion that µ(sw, γ, w, γ) = 1 follows
from Theorem 5.2. �

6. Inducing cells

Let (w, γ) ∈ DJ × Γ, and let s ∈ S. If (w, γ) ∈ Λ−
s then TsCw,γ = −q−1Cw,γ ,

and so

(20) −q−1
∑

y∈DJ
δ∈Γ

Py,δ,w,γTyδ =
∑

y∈DJ
δ∈Γ

Py,δ,w,γTsTyδ.

We also have

TsTyδ =


Tsyδ if y ∈ D+

J,s

Tsyδ + (q − q−1)Tyδ if y ∈ D−
J,s

−q−1Tyδ if y ∈ D0
J,s and δ ∈ Γ−t

qTyδ +
∑

θ∈Γ−t
µ(θ, δ)Tyθ if y ∈ D0

J,s and δ ∈ Γ+
t

where t = y−1sy. Substituting this into Eq. (20) and equating coefficients yields a
proof of the following result.

Proposition 6.1. Let s ∈ S and (w, γ) ∈ Λ−
s . If y ∈ D0

J,s and δ ∈ Γ+
t , where

t = y−1sy, then Py,δ,w,γ = 0. If y ∈ D+
J,s then Py,δ,w,γ = −qPsy,δ,w,γ for all δ ∈ Γ.

Note that this simplifies our original inductive formulas for the polynomials
Py,δ,w,γ . In particular, in the situation of Eq. (8) we have that P ′′(y, δ, w, γ) = 0
when y ∈ D0

J,s and δ ∈ Γ+
t .

Let ≤Γ be the preorder on Γ defined (as in [6]) by the rule that δ ≤Γ γ if and
only if there exists a finite sequence δ = γ0, γ1, . . . , γk = γ of elements of Γ with
µ(γi−1, γi) 6= 0 and I(γi−1) * I(γi) for all i ∈ {1, 2, . . . , k}.

Proposition 6.2. Let y, w ∈ DJ and δ, γ ∈ Γ with δ 6≤Γ γ. Then Py,δ,w,γ = 0.
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Proof. Use induction on `(w). Since δ 6= γ the case `(w) = 0 follows from (i) and
(ii) of Theorem 5.1. So assume that `(w) > 0, and let w = sv where s ∈ S and
`(v) = `(w)− 1.

The inductive hypothesis immediately implies that the terms on the right hand
side of Eq. (7) are zero, with the possible exception of the terms µ(δ, θ)Py,θ,v,γ in
the sum that appears in the third case (when y ∈ D0

J,s and δ ∈ Γ−t ). In all of
these terms we have that Iδ * Iθ, since t ∈ Iδ and t /∈ Iθ. So either δ ≤Γ θ or
else µ(δ, θ) = 0. By the inductive hypothesis, either θ ≤Γ γ or else Py,θ,v,γ = 0.
But since δ 6≤Γ γ we cannot have both δ ≤Γ θ and θ ≤Γ γ; so either µ(δ, θ) = 0 or
Py,θ,v,γ = 0. So all the terms µ(δ, θ)Py,θ,v,γ are zero, and so P ′

y,δ,w,γ = 0.
All the elements z appearing on the right hand side of Eq. (8) satisfy z 6 v, and

so the inductive hypothesis tells us that if δ 6≤Γ θ then Py,δ,z,θ = 0. Furthermore, if
θ 6≤Γ γ then Pz,θ,v,γ = 0, and so µ(z, θ, v, γ) = 0. Since δ 6≤Γ γ we must have either
θ 6≤Γ γ or δ 6≤Γ θ, and so all the terms µ(z, θ, v, γ)Py,δ,z,θ are zero. So P ′′

y,δ,w,γ = 0,
and hence Py,δ,w,γ = 0, as required. �

Suppose now that Cz,θ and Cw,γ vertices of Λ that are adjacent and satisfy
I(z, θ) * I(w, γ). If w = z then s ∈ I(w, θ) and s /∈ I(w, γ) forces sw = wt for
some t ∈ Iθ with t /∈ Iγ . So in this case θ and γ are adjacent vertices of Γ with
Iθ * Iγ . In particular, θ ≤Γ γ. The same conclusion holds trivially if the edge
{Cz,θ, Cw,γ} is vertical, since in this case θ = γ. If the edge is transverse then by
Proposition 5.4 we deduce that `(z) < `(w), and so we must have (z, θ) ≺ (w, γ).
Thus Pz,θ,w,γ 6= 0, and so θ ≤Γ γ by Proposition 6.2.

Let ≤Λ be the preorder relation on the W -graph Λ generated by the requirement
that Cz,θ ≤Λ Cw,γ whenever Cz,θ and Cw,γ are adjacent and I(z, θ) * I(w, γ). The
above calculations have proved the following theorem.

Theorem 6.3. If Cz,θ and Cw,γ are vertices of Λ with Cz,θ ≤Λ Cw,γ then θ ≤Γ γ.

Vertices θ, γ ∈ Γ are said to be equivalent if θ ≤Γ γ and γ ≤Γ θ, and the
corresponding equivalence classes are called the cells of Γ. The cells of Λ are
similarly defined, using the preorder ≤Λ. Theorem 6.3 shows that if ∆ is a cell in
Γ then the set {Cw,γ | w ∈ DJ and γ ∈ ∆ } is a union of cells in Λ. In the case
that Γ is the Kazhdan-Lusztig WJ -graph for the regular representation, this result
(and Theorem 6.3) have been proved by Meinolf Geck [4].

7. Connection with Kazhdan-Lusztig polynomials

The following result, which follows from Theorem 5.1 above, is a reformulation
of Theorem 1.1 of [6]:

Theorem 7.1. The algebra H has a unique basis {Cw | w ∈ W } such that
Cw = Cw for all w and Cw =

∑
y∈W py,wTy for some elements py,w ∈ A+ with the

following properties::
(i) py,w = 0 if y 
 w;
(ii) pw,w = 1;
(iii) py,w has zero constant term if y 6= w.

The polynomials py,w are related to the polynomials Py,w of [6] (the genuine
Kazhdan-Lusztig polynomials) by py,w(q) = (−q)`(w)−`(y)Py,w(q2). That is, to
get py,w from Py,w replace q by q2, apply the bar involution, and then multiply
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by (−q)`(w)−`(y). The quantity µ(y, w), which is the coefficient of q
1
2 (`(w)−`(y)−1)

in Py,w, is the coefficient of q in (−1)`(w)−`(y)py,w. However, since Kazhdan and
Lusztig show that µy,w is nonzero only when `(w) − `(y) is odd, µ(y, w) is the
coefficient of q in −py,w.

The elements Cw form a W -graph basis for H , and Eq. (2.3a) of [6] (or Theo-
rem 5.2 above) shows the W -graph is ordered, in the sense of Definition 2.2, relative
to the Bruhat order on W .

Applying Theorem 7.1 with W replaced by WJ yields a WJ -graph basis for the
regular representation of HJ . The representation of H obtained by inducing the
regular representation of HJ is, of course, the regular representation of H . Apply-
ing our procedure for inducing W -graphs yields a W -graph basis for H consisting
of elements Cw,γ (for w ∈ DJ and γ ∈ WJ) such that Cw,γ = Cw,γ and

(21) Cw,γ =
∑

y∈DJ

∑
δ∈WJ

Py,δ,w,γTyCδ,

where the polynomials Py,δ,w,γ satisfy the conditions given in Theorem 5.1. By
Proposition 5.5 there is a partial order on the set Λ = {Cw,γ | w ∈ DJ , γ ∈ WJ }
such that for all y, w ∈ DJ and δ, γ ∈ WJ ,

(i) if y 6 w and δ 6 γ then Cy,δ 6 Cw,γ ,
(ii) if Cy,δ 6 Cw,γ and if y, w ∈ D+

J,s for some s ∈ S, then Csy,δ 6 Csw,γ ,
(iii) if Cy,δ 6 Cw,γ with w ∈ D+

J,s and y ∈ D0
J,s for some s ∈ S, and if also

tδ > δ where t = y−1sy, then Cy,tδ 6 Csw,γ .
Furthermore, the partial order on Λ is defined to be the minimal partial order
satisfying these three properties.

Note that Λ is in bijective correspondence with W via Cw,γ ↔ wγ.

Proposition 7.2. The above partial order on Λ corresponds exactly the Bruhat
order on W , in the sense that Cy,δ 6 Cw,γ if and only if yδ 6 wγ in W .

Proof. Let us check first that the Bruhat order on W does satisfy the properties
(i), (ii) and (iii) above. With regard to (i), it is certainly true that y 6 w and δ 6 γ
implies that yδ 6 wγ. Turning to (ii), suppose that y, w ∈ D+

J,s and δ, γ ∈ WJ

with yδ 6 wγ. Since w < sw ∈ DJ we see that

`(swγ) = `(sw) + `(γ) = 1 + `(w) + `(γ) = 1 + `(wγ),

and `(syδ) = 1 + `(yδ) similarly. So syδ 6 swγ, by Deodhar [2, Theorem 1.1].
For (iii), suppose that w ∈ D+

J,s and y ∈ D0
J,s, and let δ, γ ∈ WJ with yδ 6 wγ.

Suppose also that tδ > δ, where t = y−1sy ∈ J . Then

`(syδ) = `(ytδ) = `(y) + `(tδ) = 1 + `(y) + `(δ) = 1 + `(yδ),

and since also `(swγ) = 1 + `(wγ) as above, Deodhar [2, Theorem 1.1] again gives
the desired conclusion that ytδ = syδ 6 swγ.

Since the partial order on Λ is generated by the properties (i), (ii) and (iii),
and since also the Bruhat order on W satisfies the same properties, it follows that
Cy,δ 6 Cw,γ implies that yδ 6 wγ for all y, w ∈ DJ and δ, γ ∈ WJ .

We must show, conversely, that yδ 6 wγ implies that Cy,δ 6 Cw,γ . In view of
statement IV in [2, Theorem 1.1] it is sufficient to do this when `(wγ) = `(yδ) + 1.
Making this assumption, we argue by induction on `(w). Observe that if `(w) = 0
then wγ = γ ∈ WJ , and since yδ 6 wγ it follows that yδ ∈ WJ . Hence y = 1, and
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Cy,δ 6 Cw,γ by Property (i). So suppose that `(w) > 0, and choose s ∈ S with
sw < w.

Consider first the possibility that syδ > yδ. Then we must in fact have syδ = wγ,
since, using the terminology of [2, Theorem 1.1], Property Z(s, syδ, wγ) implies that
syδ 6 wγ. So either sy = w and δ = γ, in which case Cy,δ 6 Cw,γ by Property (i),
or else y = w and γ = tδ, where t = y−1sy ∈ J , and again Property (i) gives
Cy,δ 6 Cw,γ .

The only alternative is that syδ < yδ, and in this case we have that syδ 6 swγ
(by Z(s, yδ, wγ), in Deodhar’s terminology). If y ∈ D−

J,s then the inductive hy-
pothesis yields that Csy,δ 6 Csw,γ , and Property (ii) gives Cy,δ 6 Cw,γ . Since
y ∈ D+

J,s is not possible given syδ < yδ, it remains to deal with the case y ∈ D0
J,s.

Writing t = y−1sy we have syδ = ytδ 6 swγ, and the inductive hypothesis gives
Cy,tδ 6 Csw,γ . Note that here tδ < δ and sw ∈ D+

J,s; so applying Property (iii) we
obtain the desired conclusion that Cy,δ 6 Cw,γ . �

Equation (21) and Theorem 7.1 give Cδ =
∑

θ∈WJ
pθ,δTθ, and we deduce that

Cw,γ =
∑

y∈DJ

∑
δ,θ∈WJ

Py,δ,w,γpθ,δTyθ,

since TyTθ = Tyθ for all y ∈ DJ and θ ∈ WJ . The coefficient of Tyθ in this
expression is

∑
δ∈WJ

Py,δ,w,γpθ,δ, and for this to be nonzero there must exist a
δ ∈ WJ such that Py,δ,w,γ and pθ,δ are both nonzero. Now pθ,δ 6= 0 implies that
θ 6 δ by Theorem 7.1, and Py,δ,w,γ 6= 0 gives yδ 6 wγ, by Propositions 5.5 and 7.2.
These combine to give yθ 6 yδ 6 wγ. So if the coefficient of Tyθ in Cw,γ is nonzero
then yθ 6 wγ. Furthermore, the coefficient is a polynomial in q whose constant
term is nonzero only if there exists a δ ∈ WJ such that Py,δ,w,γ and pθ,δ both have
nonzero constant terms. This only occurs when (y, δ) = (w, γ) and θ = δ; that is,
the constant term is nonzero only if yθ = wγ. Hence by the uniqueness assertion
in Theorem 7.1 we deduce that Cw,γ = Cwγ , and

(22) pyθ,wγ =
∑

δ∈WJ

Py,δ,w,γpθ,δ

for all y, w ∈ DJ and θ, γ ∈ WJ .
Since the elements Cw,γ produced by our construction coincide with the elements

Cwγ of the Kazhdan-Lusztig construction, the W -graph data of our construction
must also agree with Kazhdan-Lusztig. So if yθ 6 wγ then µ(yθ, wγ), the coefficient
of q in −pyθ,wγ , must equal the element µ(y, θ, w, γ) of our construction. That is, if
y < w then µ(yθ, wγ) equals the coefficient of q in −Py,θ,w,γ , while if y = w then it
equals µ(θ, γ), which is the coefficient of q in −pθ,γ . Eq. (22) above confirms this.

8. Concluding remarks

The computer algebra package Magma has been used to calculate the polynomi-
als Py,δ,w,γ when W is of type E6 and WJ of type D5, for WJ -graphs corresponding
to each of the irreducible characters of WJ . Explicit matrices representing the gen-
erators of H in the induced representations were found, and the defining relations
checked.

It seems plausible that Eq. (22) may be useful for computation of Kazhdan-
Lusztig polynomials, but we are yet to investigate this.
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