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Abstract. Let W be the Weyl group of a connected reductive group over a finite

field. It is a consequence of the Borel-Tits rational conjugacy theorem for maximal

split tori that for certain reflection subgroups W1 of W (including all parabolic sub-
groups), the elements of minimal reflection length in any coset wW1 are all conjugate,

provided w normalises W1. We prove a sharper and more general result of this na-
ture for any finite Coxeter group. Applications include a fusion result for cosets of

reflection subgroups and the counting of rational orbits of a given type in reductive

Lie algebras over finite fields.

1. Background and statement of results

Let W be a finite Coxeter group acting as a reflection group on the Euclidean space
V of dimension `. We refer to [B] for background.

(1.1) Definition. The reflection length n(w) of an element w ∈ W is the minimal
integer n such that w = r1r2...rn, where the ri are reflections in W .

The function n(w) is clearly conjugacy invariant and it is well known (see
[C1, Lemma 2] or [HL], for example) that for any element w ∈ W , we have

n(w) = dim(im(1− w)). (1.2)

When W is the Weyl group of a connected reductive group G which is defined
and split (see [BT]) over a finite field Fq, the function n(w) arises in the study
of rationality properties of tori. For background about the following matters the
reader is referred to [L] and the references there. Let F : G → G be the Frobenius
endomorphism associated with the Fq-structure on G. We refer to an F -stable
subvariety of G as rational and denote by HF the set of F -fixed points of any variety
H on which F acts. It is well-known that the GF -conjugacy classes of rational (that
is, F -stable) maximal tori of G are parametrised by the conjugacy classes of W .
Denote by T0 a fixed maximal torus of G which is split over Fq. For any group H
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defined over Fq, denote by r(H) its Fq-rank (the dimension of any of its maximal
Fq-split tori). Thus r(G) = r(T0) = dim(T0). For any element w ∈ W , we say that
the rational maximal torus T is w-twisted and write T = Tw if T = gT0g

−1 for
some g ∈ G such that g−1F (g) = ẇ ∈ NG(T0) where ẇT0 = w ∈ W = NG(T0)/T0.
The set {w ∈ W | T is w-twisted } is a conjugacy class of W .

If Tw is a w-twisted rational maximal torus, then we have (see [L, (5.5)])

r(Tw) = `− n(w) (1.3)

where ` = r(G). Now suppose x is a semisimple element of GF . The connected
centraliser CG(x)◦ is a reductive group defined over Fq and the rational conjugacy
of the maximally split maximal tori of CG(x)◦, proved in [BT], has the following
simple (but not obvious) consequence for the length function.

(1.4) Proposition. Let W be the Weyl group of a connected reductive group G
over Fq. Suppose W1 ≤ W is the Weyl group of the connected centraliser of a
semisimple element of GF (e.g. W1 could be any parabolic subgroup of W – see §2
below). Let w be an element of the normaliser in W of W1. Then any two elements
of the coset wW1 which have minimal reflection length in the coset are conjugate
in W .

We shall explain how (1.4) follows from the work of Borel and Tits in the next
section, but our main purpose in this note is to prove an elementary but more
general result concerning reflection groups, of which (1.4) is a consequence.

(1.5) Theorem. Let W be a finite Coxeter group acting on a Euclidean space V .
Let Φ be the corresponding root system, with Π a chosen base of Φ. Let σ be an
orthogonal transformation of V such that σΠ = Π. Then, for any element w ∈ W ,
the following conditions are equivalent

(1) dim(im(1− σw)) is minimal
(2) There is an element x ∈ W such that σw = x−1σx.
(3) σw stabililises some simple system in Φ.

We shall see below (see §2 or (4.4)(1)) that (1.4) follows easily from (1.5), with
W (of (1.5)) replaced by W1. Moreover, (1.5) shows that the elements of minimal
reflection length in wW1 are actually conjugate by an element of W1. If W1 is any
reflection subgroup of W , the choice of a simple system Π for W determines a length
function for W and it is the case (see §4 below) that each coset wW1 contains a
unique shortest element with respect to this length function. If w normalises W1,
our theorem identifies the conjugacy class of elements of minimal reflection length
in wW1 as that of this shortest element in the coset (see (4.2) below).

2. Rational tori

In this section we indicate how (1.4) is related to the results of [BT]. We maintain
the notation of §1 and assume that the derived group G′ is simply connected. By a
theorem of Steinberg [St §8] this implies that for any element t ∈ T0, the centraliser
CW (t) is a reflection subgroup of W . It is the case that all parabolic subgroups of
W arise in this way, as may be seen from the results in [C2], or from the fact that
the corresponding stabilisers in the Lie algebra case are all the parabolic subgroups
of W .
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Let x be a semisimple element of GF . If T is any rational maximal torus in
CG(x)◦, then there exists an element g ∈ G such that T = gT0g

−1, and g−1F (g)
is a representative in NG(T0) of w ∈ W = NG(T0)/T0. Moreover x ∈ T , so that
y = g−1xg ∈ T0. Recall that since T0 is split over Fq, the F -action on W is trivial.

(2.1) Proposition. (cf. [L, (5.5)]) Maintaining the notation above, let W1 be the
centraliser in W of y. Then W1 is a reflection subgroup of W (see the remarks
above) and we have

(1) The W -orbit of y ∈ T0 is determined by x, independently of the choice of T
or g.

(2) y is fixed by the endomorphism w ◦ F of T0 (given by t 7→ wF (t)w−1).
(3) w normalises W1.
(4) {v ∈ W | y ∈ T v◦F

0 } = wW1.

Proof. The first part follows because any two elements of T0 which are conjugate in
G are conjugate by an element of W , while the second part is a simple computation.
For the third part, observe that since F (y) = w−1yw,

w−1W1w = CW (w−1yw) = CW (F (y)) ⊇ F (CW (y)) = F (W1) = W1

The fourth part follows from the second, since (v ◦ F )(y) = (w ◦ F )(y) if and only
if w−1v ∈ CW (F (y)) = W1. �

(2.2) Corollary. The coset wW1 ⊆ W of (2.1) is determined up to conjugacy in
W by x.

This follows immediately from (2.1).

(2.3) Proposition. Maintain the above notation. The subset S1 of W consisting
of those elements v such that CG(x)◦ contains a v-twisted rational maximal torus
of G coincides with the union S2 of those conjugacy classes which are represented
in wW1.

Proof. Suppose v ∈ S1. Then x ∈ hT0h
−1 for some h ∈ G with h−1F (h) ∈ vT0. By

(2.2), v is conjugate to an element of wW1; hence v ∈ S2. Conversely, let u ∈ W1.
To complete the proof we show that there is a wu-twisted maximal torus which
contains x.

Since CG(y)◦ has Weyl group W1 we may choose u̇ ∈ F (CG(y)◦) with u̇T0 = u.
Now F (g)u̇F (g)−1 ∈ F (gCG(y)◦g−1) = F (CG(x)◦) ⊆ CG(x)◦, and by Lang’s The-
orem we may choose f ∈ CG(x)◦ with f−1F (f) = F (g)u̇F (g)−1. Writing k = fg
and T1 = kT0k

−1, we have x = fxf−1 = kyk−1 ∈ T1, so that T1 ⊆ CG(x)◦.
Moreover,

k−1F (k) = g−1f−1F (f)F (g) = g−1F (g)u̇ = ẇu̇,

which shows that T1 is rational and wu-twisted. �

We are now able to give the

Proof of (1.4). Given a subgroup W1 of W as specified in the statement of (1.4) and
an element w ∈ NW (W1), there is an element y ∈ T0 with centraliser W1 in W and,
provided q is sufficiently large, which we may assume, y ∈ Tw◦F

0 . Let g ∈ G satisfy
g−1F (g) = ẇ. Then let x = gyg−1. By [BT, Theorème 4.21], the maximally split
tori in CG(x)◦ are conjugate in CG(x)◦F and hence a fortiori in GF . But, by (1.3)
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and (2.3), the GF -conjugacy classes of these correspond to the conjugacy classes of
W which are represented in wW1 and have minimal reflection length among those
classes. Hence there is a unique such class. �

3. Proof of the main theorem

We shall require the following two elementary results.

(3.1) Lemma. Let V be a finite dimensional vector space over a field, equipped
with a non-degenerate symmetric bilinear form ( , ). If θ is any isometry of V ,
then im(1− θ) = ker(1− θ)⊥, where S⊥ denotes the perpendicular subspace of the
subset S of V .

The proof is easy and left to the reader. The second result is

(3.2) Proposition. Let V be as in (3.1) and suppose g (6= 1) is an isometry
of V . Assume the characteristic of the ground field is not two. Let a be a non-
isotropic vector in im(1−g) and let ra be the involutory reflection in the hyperplane
orthogonal to a. Then

dim(im(1− rag)) = dim(im(1− g))− 1

Proof. By hypothesis, there is an element v ∈ V such that a = (1− g)v. Then

0 6= (a, a) = (v − gv, v − gv) = 2(v, v)− 2(v, gv)

Moreover

(1− rag)v = v − ra(gv)

= v − gv + 2
(gv, a)
(a, a)

a

= a + 2
(

(gv, v)
(a, a)

− (gv, gv)
(a, a)

)
a

= a− a

= 0

It follows that gv = rav, whence (1− rag)a = 0. Now

im(1− rag) = im ((1− ra) + ra(1− g)) ⊆ raim(1− g) = im(1− g)

since im(1 − ra) = span{a} ⊆ im(1 − g). But by (3.1), a 6∈ im(1 − rag), since
a ∈ ker(1 − rag) and a is not isotropic. Thus a is a non-zero vector which is in
im(1−g), but is not in im(1−rag). It follows that dim(im(1−rag)) < dim(im(1−g)).

On the other hand (1 − rag) = ra(ra − g) and since ra is a reflection, the rank
of (ra − g) differs from that of (1− g) by at most 1. Hence the result. �

We are now in a position to give the

Proof of (1.5). The equivalence of conditions (2) and (3) is clear from the tran-
sitivity of the action of W on the set of simple systems. Suppose we know that
(1) implies (2). Then it follows that the smallest value of dim(im(1 − σw)) is
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dim(im(1− σ)), whence (2) implies (1). Thus the proof is reduced to showing that
(1) implies (2).

Assume w ∈ W is such that dim(im(1 − σw)) is minimal. By hypothesis, σ
permutes the elements of Π, whence conjugation by σ permutes the generators of
W . So σ normalises W .

Let D = {v ∈ V | (v, a) ≥ 0 for all a ∈ Π} and recall that V =
⋃

t∈W tD. Write
K = ker(1 − σw). We wish to show that σw is conjugate to σ by an element of
W . Now since a real vector space is not the union of a finite number of proper
subspaces, there is an element t ∈ W such that t−1D ∩ K spans K. If we write
w1 = σ−1tσwt−1 ∈ W , then σw1 = t(σw)t−1, so that K1 = ker(1 − σw1) = tK.
Moreover D ∩K1 spans K1. We shall show that w1 = 1.

If w1 6= 1, there exists a ∈ Π such that w−1
1 a ∈ Φ−. Write b = σa ∈ Π. Then for

all v ∈ D ∩K1, we have

0 ≤ (b, v) = (b, (σw1)v) = ((w−1
1 σ−1)b, v) = (w−1

1 a, v) ≤ 0.

Hence b ∈ (D ∩K1)⊥ = K⊥
1 = im(1− σw1) (by (3.1)). It follows from (3.2) that

dim(im(1− rbσw1)) < dim(im(1− σw1)),

contradicting the minimality of the right hand side. Hence w1 = 1, so that
σw = t−1σt, which completes the proof of the theorem. �

4. Application to reflection subgroups

Suppose that W is a finite Coxeter group on V , that Φ is its root system in V
and that Φ+ and Π are corresponding sets of positive and simple roots in Φ. Let
W1 be any reflection subgroup of W ; the root system Φ1 of W1 is a subsystem of Φ
and it follows from [D, (3.3) and (3.4)] that Φ+

1 = Φ+ ∩ Φ1 is a positive system in
Φ1. Denote by Π1 ⊂ Φ+

1 the corresponding simple system in Φ1. There is a length
function `(w) on W which is determined by the simple system Π and Corollary
(3.4)(ii) of [D] asserts that

(4.1). Each coset wW1 of W1 in W contains a unique element σ with `(σ) minimal.

Our main result (1.5) may be interpreted in this context as follows.

(4.2) Corollary. Suppose that W is a finite Coxeter group on V with root system
Φ ⊂ V . Let W1 be any reflection subgroup of W and let w ∈ NW (W1). Then
σ ∈ wW1 has minimal reflection length in wW1 if and only if there exists a simple
system Π ⊂ Φ such that σ is the unique element of the coset wW1 with `(σ) minimal
(cf. (4.1)). Such elements are all conjugate under W1.

Proof. Let Π ⊂ Φ be a simple system and suppose σ ∈ wW1 with `(σ) minimal.
It follows from [D, (3.4)] that σΠ1 ⊂ Φ+ and since σ normalises W1, σΠ1 ⊂ Φ1.
So σΠ1 is a simple system in Φ1 which is contained in Φ+ ∩ Φ1 = Φ+

1 , whence
σΠ1 = Π1. We may now apply Theorem (1.5), with W replaced by W1 and Π by
Π1 to deduce that n(σ) is minimal.

If σ′ ∈ wW1 is such that n(σ′) is minimal, then by (1.5), σ′ is conjugate under
W1 to σ, which proves the remaining assertions. �

The following fusion result is an immediate consequence of (4.2).
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(4.3) Corollary. Suppose that W is a finite Coxeter group on V with root system
Φ ⊂ V and simple system Π ⊂ Φ. Let W1 be any reflection subgroup of W . If
σ ∈ NW (W1) is the shortest element in σW1, then any W -conjugate of σ which lies
in σW1, is W1-conjugate to σ.

(4.4) Concluding Remarks.
(1) The last sentence of the statement (4.2) is stronger than (1.4).
(2) In (4.3), σ could equally be assumed to have minimal reflection length in the

coset σW1. This form of the statement would eliminate specific reference
to any simple system Π.

(3) The statement (4.3) may be reformulated in terms of commutators. For any
subgroup H of W , write [σ,H] for the commutator set {σ−1h−1σh | h ∈ H}.
Then in the the notation of (4.3), [σ,W ] ∩W1 = [σ,W1].

(4) The first part of the statement (4.2) is clearly false if the assumption that w
normalises W1 is dropped, as may be seen in the example when W1 =< r >
is generated by a simple reflection. If s is another simple reflection which
does not commute with r, then the element of rsW1 which has minimal
length is rs, which has reflection length 2. But rsr has reflection length 1.

(5) If W1 is a reflection subgroup of the finite Coxeter group W as in (4.2), it
is not always true that the elements of minimal reflection length in a coset
wW1 are conjugate even in W , without the assumption that w normalises
W1. For example if W is a Weyl group of type B4, write its elements as
monomial matrices with non-zero entries±1 and take W1 to be the reflection
subgroup (of type A4

1) generated by the reflections[ 0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

]
,

[ 0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

]
,

[ 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

]
,

[ 1 0 0 0

0 1 0 0

0 0 0 −1

0 0 −1 0

]
.

The elements w =

[ 1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

]
and

[ 1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 −1

]
are in the same coset

wW1; both have minimal reflection length 2 in the coset, but they have
different eigenvalues whence they are not conjugate.

(6) In [L], formulae were given for the number of rational semi-simple orbits
of a given “type” (a type is defined by a conjugacy class in W ) in the Lie
algebra G of G (G as in §1) (see, e.g. [L, Theorem (5.6)]). These formulae
involve the number of conjugates of σ in the coset wW1 (notation as in the
previous remark). This number is easily seen to be equal to the cardinality
of the commutator set [σ,W1] = {σ−1u−1σu | u ∈ W1} which in turn is
equal to | W1/CW1(σ) |, where CW1(σ) denotes the set of elements of W1

which commute with σ.
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