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Abstract. We define a concept of “regularity” for finite unitary reflection groups, and

show that an irreducible finite unitary reflection group of rank greater than 1 is regular
if and only if it is a Coxeter group. Hence we get a characterization of Coxeter groups

among all the irreducible finite reflection groups of rank greater than one.

The irreducible finite unitary reflection groups were classified by Shephard and Todd

([12]) and by Cohen ([5]). They have been studied extensively by many people since

then (see [2; 3; 4; 6; 7; 8; 9; 10; 11; 13]). Finite Coxeter groups are a special family

of reflection groups, whose properties are relatively well known. It is interesting to ask

what properties of Coxeter groups are shared also by the other reflection groups, and

what are not. In the present paper we consider a property, which we call regularity,

of a reflection group, defined by the existence of a basic section of an associated root

system R (see 3.1). We show that an irreducible finite reflection group G of rank greater

than 1 is regular if and only if all the root line circles in R are perfect (see 2.3 for the

definitions). Then we further show that this holds if and only if G is a Coxeter group.

Thus we get a characterization of Coxeter groups among all the finite reflection groups.
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Let G be an irreducible finite reflection group which acts irreducibly on a unitary

space V , and let S be a simple reflection set for G (see 1.5). The strategy for proving

our main result is as follows. It suffices to show that if G is complex and has rank

greater than 1 then it is not regular. We show in Lemma 1.7 that the order |Z(G)| of

the center Z(G) of G divides the cardinality of any root line in a root system R of G

(see 1.6). We also show in Theorem 3.4 that G is regular if and only if all root line

circles in R (see 2.1) are perfect. Suppose that G is regular and of rank greater than 1.

Then we further show in Lemma 4.2 (1) that for any root α in R, the cardinality of

the root line Rα is equal to the order of some s ∈ S. We show in Lemma 4.2 (2) that

|Z(G)| divides the orders o(s) of all s ∈ S. We also show in Lemma 4.2 (3) that if the

cardinality of each root line of R is 2, then G is a Coxeter group. By the classification

of the irreducible finite unitary reflection groups, there are only three complex groups

of rank greater than 1 satisfying both conditions (1), (2) of Lemma 4.2, namely, the

groups G8, G12 and G24 (in the notation of Shephard and Todd [12]). But the groups

G12 and G24 are not regular by Lemma 4.2 (3), and we show that G8 is not regular

by exhibiting an an imperfect root line circle in its root system. This proves our main

result.

The contents of the paper are organized as follows. In Section 1 we collect some

definitions and results concerning irreducible finite reflection groups G which are either

well known or easily proved. Then in Section 2 we introduce the concept of perfectness

for a root line circle, a root system and a reflection group. Lemma 2.6, concerned

with perfectness, is crucial in the proof of our main result. Regularity is introduced in

Section 3, where we establish the equivalence of regularity of G and perfectness of its

associated root system R (see Theorem 3.4). Our main result, Theorem 4.4, is proved

in Section 4.

§1. Roots and reflections.

We collect some definitions and results concerning irreducible finite reflection groups;

many of them follow from Cohen’s paper [5].
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1.1. Let V be a complex vector space of dimension n. A reflection on V is a linear

transformation on V of finite order with exactly n−1 eigenvalues equal to 1. A reflection

group G on V is a finite group generated by reflections on V . The group G is reducible

if it is a direct product of two proper reflection subgroups and irreducible otherwise.

The action of G on V is said to be irreducible if V has no nonzero proper G-invariant

subspaces. In the present paper we shall always assume that G is irreducible and acts

irreducibly on V . Call the dimension of V the rank of G. A reflection group G on V

is called a real group or a Coxeter group if there is a G-invariant R-subspace V0 of V

such that the canonical map C⊗R V0 → V is bijective. If this is not the case, G will be

called complex. (Note that, according to this definition, a real reflection group is not

complex.)

Since G is finite, there exists a unitary inner product ( , ) on V invariant under G.

From now on we assume that such an inner product is fixed.

1.2. A root of a reflection on V is an eigenvector corresponding to the unique nontrivial

eigenvalue of the reflection. A root of G is a root of a reflection in G.

Let s be a reflection on V of order d > 1. There is a vector a ∈ V of length 1 and a

primitive d-th root ζ of unity such that s = sa,ζ , where sa,ζ is defined by

(1.2.1) sa,ζ(v) = v + (ζ − 1)(v, a)a

for all v ∈ V . We also write sa,d for sa,ζ if ζ = e2πi/d. Note that a can be chosen to be

any root of s of length 1, and ζ is the nontrivial eigenvalue of s.

We use the notation |x| for the cardinality of x if x is a set, and for the absolute value

of x if x is a complex number. The meaning will always be clear from the context.

For each v ∈ V define oG(v) to be the order of the (necessarily cyclic) group that

consists of the identity and the reflections in G which have v as a root. (This group is

GW = { g ∈ G | gu = u for all u ∈ W }, where W = v⊥.) Thus oG(v) > 1 if and only

if v is a root of G. If a is a root of G, then oG(a) will be called the order of a (with

respect to G). We shall denote oG(a) simply by o(a) when G is clear from the context.
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Note that we shall also use the notation o(ζ) for the order of ζ, where ζ could be

either a root of unity, or a group element. This should cause no confusion.

Lemma 1.3. We have o(gv) = o(v) = o(cv) for all v ∈ V , g ∈ G and c ∈ C∗, where

C∗ := C \ {0}.

Proof. Let W = v⊥. Then

u ∈ W ⇐⇒ (u, v) = 0 ⇐⇒ (gu, gv) = 0 ⇐⇒ gu ∈ (gv)⊥.

This implies that gW = (gv)⊥. Now we have

h ∈ GgW ⇐⇒ h(gu) = gu for all u ∈ W ,

⇐⇒ (g−1hg)u = u for all u ∈ W ,

⇐⇒ g−1hg ∈ GW ,

⇐⇒ h ∈ gGW .

So we get GgW = gGW and hence o(gv) = |GgW | = |gGW | = |GW | = o(v). The

equation o(v) = o(cv) follows from the fact that v⊥ = (cv)⊥. �

1.4. A pair (R, f) is called a root system in V , if

(i) R is a finite set of vectors of V of length 1;

(ii) f : R → N \ {1} is a map such that sa,f(a)R = R and f(sa,f(a)(b)) = f(b) for all

a, b ∈ R;

(iii) the group G generated by { sa,f(a) | a ∈ R } is a (finite) reflection group, and for

all a ∈ R and c ∈ C,

ca ∈ R ⇐⇒ ca ∈ Ga.

The group G is called the reflection group associated with the root system (R, f).

We have oG(a) = f(a) for any a ∈ R.

We shall denote a root system (R, f) simply by R when f is clear from the context.

1.5. A system of simple roots is a pair (B,w), where B is a finite set of vectors of V

and w is a map from B to N \ {1}, satisfying the following conditions:
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(i) for all a, b ∈ B, we have |(a, b)| = 1 ⇐⇒ a = b;

(ii) the group G generated by S = { sa,w(a) | a ∈ B } is finite;

(iii) there is a root system (R, f) with R = GB and f(a) = w(a) for all a ∈ B;

(iv) the group G cannot be generated by fewer than |B| reflections.

We call the elements of S simple reflections. We also call (R, f) the root system of G

generated by B, and B a simple system for R.

Note that we do not require B to be linearly independent. If B is linearly independent,

then condition (iv) holds automatically.

The above definition of simple system is considerably weaker than the usual definition

for Coxeter groups; in particular, it is not true that if B1 and B2 are simple systems for

the same root system R then there is an element g ∈ G with gB1 = B2.

It is easily seen that G acts irreducibly on V if and only if the root system R (resp. the

simple root system B) spans V and cannot be decomposed into a disjoint union of two

proper subsets R1 and R2 (resp. B1 and B2) with R1 ⊥ R2 (resp. B1 ⊥ B2).

By Lemma 1.3 we see that if α ∈ B and β ∈ Cα∩R, then B′ = (B \ {α})∪ {β} also

forms a simple root system for R.

1.6. Let R be a root system in V with G the associated reflection group. For any

α ∈ R, let Rα = Cα ∩R, called a root line in R. By Property (iii) of a root system, we

see that a root line of R is contained in a single G-orbit, and that the action of G on R

induces a permutation action on R, the set of all root lines of R. It is easily seen that

if α, β ∈ R then sβ(Rα) 6= Rα unless β ∈ Rα or (β, α) = 0.

We have the following result concerning the root lines.

Lemma 1.7. Let R be a root system with G the associated reflection group. Then the

order of the center Z(G) of G divides |Rα| for any α ∈ R.

Proof. Since G acts irreducibly on V , it follows by Schur’s Lemma that elements of

Z(G) act as scalar multipliers. Hence Rα is a union of some Z(G)-orbits, each of which

has the same cardinality |Z(G)|. So the result follows. �
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1.8. In the subsequent sections, we always assume that G is an irreducible finite reflec-

tion group of rank greater than 1. Let R be an associated root system and B a simple

system for R. Let S = { sα | α ∈ B } be the set of the simple reflections associated with

the simple system B; that is

sα(v) = v + (e2πi/dα − 1)(v, α)α (for all v ∈ V )

where dα is the order of α (and also of sα).

1.9. Let (R, f) be a root system with G the associated reflection group. Then sk
a,f(a)

is a reflection in G for any a ∈ R and any integer k with 1 6 k < f(a). Conversely,

every reflection in G has such a form. For a, b ∈ R, if 1 6 h < f(a) and 1 6 k < f(b)

then the reflections sh
a,f(a) and sk

b,f(b) are G-conjugate if and only if a and b are in the

same G-orbit and h = k. It is possible that there is another root system (R′, f ′) in V

with the same associated reflection group G. In that case, we can find, for any a ∈ R, a

root a′ ∈ R′ such that sa,f(a) = sa′,f ′(a′). This implies that a′ ∈ Ca. Similarly, for any

a′ ∈ R′, we can find some a ∈ R with a ∈ Ca′. According to the condition (iii) of a root

system, we see that the cardinality of a root line Ra in R is equal to that of the root

line Ra′ in R′. In particular, when R consists of a single G-orbit, (R, f) is determined

by G up to a scalar factor. These facts will be used in Section 4 in the proof of our

main result.

§2. Perfectness.

2.1. Let R be the set of all root lines. A sequence ξ : l1, l2, . . . , lr in R is called a

circle if r > 1 and the following conditions hold.

(i) li 6= li+1 for all i = 1, 2, . . . , r, with the convention that lr+1 = l1.

(ii) For every h with 1 6 h 6 r, there exists some sh ∈ S satisfying sh(lh) = lh+1.

2.2. Given two distinct root lines l and l′ such that l′ = s(l) for some s ∈ S, it is possible

that there exists another s′ ∈ S with s′(l) = l′. (This happens, for example, for the

group G7 of Shephard and Todd). Thus the sequence of simple reflections s1, s2, . . . , sr

associated with a root line circle ξ need not be unique.
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2.3. We say that a root line circle ξ : l1, l2, . . . , lr in R is perfect (with respect to S),

if for any sequence of simple reflections s1, . . . , sr satisfying sh(lh) = lh+1 for all h, we

have srsr−1 · · · s1(α) = α for each α ∈ l1. Otherwise we say that the root line circle is

imperfect.

Remark 2.4. (1) If one root α in l1 satisfies the condition that srsr−1 · · · s1(α) =

α, then so do all the others. So when checking perfectness we need only consider

a fixed α ∈ l1. However, we do need to consider every possible sequence of simple

reflections s1, s2, . . . , sr associated with the root line circle, since, as explained in 2.2

above, it need not be unique.

(2) Perfectness is defined relative to a set S of simple reflections for G. In the

sequel, S is always fixed, and so we shall not mention the dependence on S explicitly.

2.5. Let R =
⋃

i∈I Ri be the decomposition of R into a disjoint union of G-orbits Ri,

and R =
⋃

i∈I Ri the corresponding decomposition of R. We say that R and R (resp. Ri

and Ri) are perfect if all the root line circles in R (resp. Ri) are perfect (relative to S).

We say that G is perfect if its associated root system R is perfect.

Lemma 2.6. Let Ri be a perfect G-orbit in R. Suppose that we have two root line

sequences ξ : l1, . . . , lt and η : l′1, . . . , l′r in Ri with l1 = l′1 and lt = l′r, and two simple

reflection sequences s1, . . . , st−1 and s′1, . . . , s′r−1 such that sh(lh) = lh+1 6= lh and

s′k(l′k) = l′k+1 6= l′k for all h and k (with 1 6 h < t and 1 6 k < r). Take any root

α ∈ l1. Then the equation

st−1st−2 · · · s2s1(α) = s′r−1s
′
r−2 · · · s′2s′1(α)

is satisfied.

Proof. Let δ = st−1st−2 · · · s2s1(α) and δ′ = s′r−1s
′
r−2 · · · s′2s′1(α), and suppose that the

result is false. Then δ′ = cδ for some complex number c 6= 1. For all h and k with

1 6 h 6 t and 1 6 k 6 r, put αh = sh−1sh−2 · · · s1(α) and βk = s′k−1s
′
k−2 · · · s′1(α).

Thus αt = δ and βr = δ′, and α1 = β1 = α.
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Define a new sequence of roots ζ ′ : µ1 = δ, µ2, . . . , µp = α from the sequence

ζ : α1 = α, α2, . . . , αt = δ as follows. Start by reversing the order of ζ to get the

sequence ζ− : αt, . . . , α2, α1; then, for each h (1 6 h < t) such that the order mh of sh

is greater than 2, insert the sequence of roots

sh(αh+1), s2
h(αh+1), . . . , smh−2

h (αh+1)

between αh+1 and αh in ζ−. This gives the desired sequence ζ ′. Now we define τ to

be the root line sequence l1, l2, . . . , lp+r−1 such that lh contains µh for 1 6 h 6 p

and lp+k contains βk for 1 6 k < r. Then τ is an imperfect circle, contradicting our

assumption. �

§3. Basic sections of root systems.

As before, let B be a simple system for a root system R, let G be the associated

reflection group and S = { sα | α ∈ B } the set of simple reflections.

3.1. A subset R′ ⊂ R is called a section of R if it contains a unique root in each root

line l ∈ R. A section R′ of R is basic if, for every β ∈ B, the simple reflection sβ

permutes the roots in the set R′ \Rβ . Equivalently, the section R′ is basic if s(γ) ∈ R′

whenever γ ∈ R′ and s is a simple reflection such that s(Rγ) 6= Rγ .

Basicness, like perfectness, is defined relative to the set S, which we shall consider to

be fixed.

A positive root system of a Coxeter group forms a basic section of its root system.

Also, any root of a reflection group of rank one forms a basic section.

3.2. In general, a root system always contains a section, but need not contain a basic

section. A finite reflection group G is called regular if there exists a simple system B

for a root system R of G such that R contains a basic section relative to the simple

reflection set of G corresponding to B.

The main goal of the present paper is to show that an irreducible finite reflection

group G is regular if and only if it is either a Coxeter group or of rank 1.

By Lemma 2.6, we see that if all the root line circles of R are perfect then we can define

a section R′ of R in the following way. Let R =
⋃

i∈I Ri be the decomposition of R into
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a disjoint union of G-orbits Ri, and R =
⋃

i∈I Ri the corresponding decomposition of

the root line set R. For any i ∈ I, fix a root α in Ri, and let l = Rα ∈ Ri be the root line

containing α. For any root line l′ ∈ Ri there exists a sequence ξ : l1 = l, l2, . . . , lr = l′

in Ri such that lh 6= lh+1 and sh(lh) = lh+1 for 1 6 h < r and some sh ∈ S. Define a

root γ ∈ l′ by γ = sr−1sr−2 · · · s1(α). By Lemma 2.6, γ depends only on α and not on

the choice of ξ; so each l′ contains a unique such γ. Let R(i) be the set of all roots γ

obtained from α in this way for l′ ∈ Ri. Then the set R′ =
⋃

i∈I R(i) is a section of R.

Lemma 3.3. The section R′ defined above is basic.

Proof. Let β ∈ B and γ ∈ R′ \Rβ . It suffices to prove that sβ(γ) ∈ R′. We may assume

that (β, γ) 6= 0, since otherwise sβ(γ) = γ ∈ R′.

Let Ri be the G-orbit of R in which γ lies, and let α be the fixed root in Ri used

in defining R′. By the definition of R′ there exist root lines Rα = l1, l2, . . . , lr = Rγ

and simple reflections s1, s2, . . . , sr−1 such that lh 6= lh+1 and sh(lh) = lh+1 for

1 6 h < r, and sr−1 · · · s1(α) = γ. Now as β /∈ Cγ and (β, γ) 6= 0, it follows that

sβ(lr) = sβ(Rγ) 6= Rγ , and so if we define lr+1 = sβ(lr) then the conditions lh 6= lh+1

and sh(lh) = lh+1 hold for 1 6 h < r + 1. Hence sβ(γ) = srsr−1 · · · s1(α) is in R′, as

required. �

Lemma 3.3 immediately yields the “if” part of the following Theorem.

Theorem 3.4. An irreducible finite reflection group G is regular if and only if all the

root line circles in R are perfect.

Proof. By Lemma 3.3, it suffices to prove the “only if” part. Let R′ be a basic section

of R. Let ξ : l1, . . . , lr be a root line circle of R and s1, . . . , sr simple reflections with

sh(lh) = lh+1 for 1 6 h 6 r. Choose a root α1 ∈ l1. By Remark 2.4 (1) we can assume

without loss of generality that α1 ∈ R′. Proceeding inductively, define αj+1 = sj(αj)

for 1 6 j 6 r. Since sj(lj) 6= lj it follows from the definition of a basic section that

αj ∈ R′ for all j. Since αr+1 ∈ l1 ∩ R′ and since α1 is the unique root in l1 ∩ R′, this

implies that αr+1 = α1, and so the root line circle ξ is perfect. �
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§4. The main result.

In this section, we assume that G is a reflection group of rank greater than 1 and

that (R, oG) is an associated root system.

Lemma 4.1. Assume that G is regular. Then for any α ∈ R, the root line Rα has

cardinality oG(α).

Proof. According to 1.5, we can choose a simple system B and a basic section R′ for

R with B ⊂ R′. Without loss of generality, we may assume that α ∈ R′. Since sα

acts on Rα by multiplication by the scalar ζ = e2πi/o(α), it follows that Rα is a union

of 〈sα〉-orbits, each orbit having the same cardinality o(α). We shall show that Rα

actually consists of a single 〈sα〉-orbit, and hence has cardinality o(α).

Let Z be the subgroup of C∗ generated by ζ, and let γ ∈ Rα be arbitrary. Since

Rα = Cα ∩ Gα, there exists an element y ∈ G with γ = y(α). We may choose

s1, s2, . . . , sr ∈ S such that y = srsr−1 · · · s1. Put α0 = α, and for 1 6 k 6 r, put

αk = sksk−1 · · · s1(α) and let lk be the root line containing αk. We use induction on k

to show that for each k, there exists an α′k ∈ R′ such that αk ∈ Zα′k.

The case k = 0 is trivial since α0 = α ∈ R′. So assume that k > 1 and that

αk−1 = ζmα′k−1 for some α′k−1 ∈ R′ and m ∈ Z. If sk(lk−1) 6= lk−1 then by the

definition of a basic section the root sk(α′k−1) is in R′; so defining α′k = sk(α′k−1), we

conclude that αk = sk(αk−1) = ζmα′k, as required. Now assume that sk(lk−1) = lk−1.

Then either β ∈ lk−1 or else (β, αk−1) = 0, where β is the simple root such that

sβ = sk. In the latter case αk = sβ(αk−1) = αk−1, and defining α′k = α′k−1 ∈ R′

gives αk ∈ Zα′k as required. On the other hand, if β ∈ lk−1, then by Lemma 1.3, we

have o(β) = oG(αk−1) = oG(α), since αk−1 and α are in the same G-orbit. Hence

sβ acts on lk−1 by multiplication by ζ; so αk = sβ(αk−1) = ζαk−1 = ζm+1α′k, where

α′k = α′k−1 ∈ R′, and this completes the induction.

Since γ = αr, we conclude from the above that γ ∈ Zα′r, where α′r ∈ R′ ∩ lr. But

lr = Rγ = Rα, and α ∈ R′ by hypothesis. Since R′ is a section, it follows that α′r = α,

and thus γ ∈ Zα. But γ was chosen as an arbitrary element of Rα, and so we conclude
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that Rα = Zα, as required. �

Lemma 4.2. Assume that G is regular.

(1) For any α ∈ R, we have |Rα| = o(s) for some s ∈ S.

(2) |Z(G)| is a divisor of o(s) for every s ∈ S.

(3) If the cardinality of each root line of R is 2, then G is a Coxeter group.

Proof. Since R = GB, there is an element β ∈ B with α = g(β) for some g ∈ G. By

Lemmas 4.1 and 1.3, we have |Rα| = oG(α) = oG(β) = o(sβ). So (1) follows. Then

(2) follows from (1), Lemma 1.7 and R = GB. Finally, under the assumption of (3),

we can choose a simple system B and a basic section R′ for R with B ⊂ R′. Then

R = R′ ∪ (−R′). Let S = { sα | α ∈ B } be the corresponding simple reflection set

of G. For each s = sα ∈ S, define Ps to be the set of all w in G such that w−1(α) ∈ R′.

Clearly, Ps contains the identity element of G, and Ps ∩ sPs = ∅ for s ∈ S. Since

(sw)−1(α) = −w−1(α), it is clear that w ∈ Ps if and only if sw /∈ Ps. If w ∈ Ps and

wsβ /∈ Ps for some β ∈ B, then γ = w−1(α) is in R′ while sβ(γ) /∈ R′. This forces

γ = β. That is, w−1(α) = β, which implies that w−1sαw = sβ . We conclude that

(G, S) is a Coxeter system by [1, Ch. IV, No. 1.7, Proposition 6]. �

4.3. Let G be a reflection group irreducibly acting on a unitary space V with R an

associated root system. Two simple systems B = {e1, · · · , er} and B′ = {e′1, · · · , e′t}

for R are said to be equivalent if {Re′
j
| 1 6 j 6 t } = {Rgei | 1 6 i 6 r } for some

g ∈ G. (In particular, this implies that r = t.) Given two equivalent simple systems B

and B′ for a root system R, it is easily seen that R is perfect with respect to B if and

only if it is perfect with respect to B′.

We now show that the group G8 of the list of Shephard and Todd is not regular.

Let V be a unitary space of dimension 2 and take an orthonormal basis ε1, ε2 in V .

Then e1 = ε1, e2 = 1+i
2 (ε2 − ε1) are unit vectors spanning V , where i2 = −1. Define

R = { cγi | c ∈ {±1,±i}, 1 6 i 6 6 } where γ1 = e1, γ2 = e2, γ3 = e1− ie2, γ4 = e1 +e2,

γ5 = e1 + (1 − i)e2 and γ6 = (1 + i)e1 + e2. Then (R, 4) is a root system of G = G8.
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Let B = {e1, e2}. Then (B, 4) is the unique simple root system for R up to equivalence.

We have

γ2
s17−→ γ4

s27−→ γ1
s27−→ γ3

s17−→ −iγ2,

where si = sei
, and the notation a

s7−→ b means s(a) = b. Then Rγ2 , Rγ4 , Rγ1 , Rγ3 form

an imperfect root line circle in R. Thus R contains an imperfect root line circle for any

choice of simple system, and so it follows from Theorem 3.4 that G8 is not regular.

We are now ready to prove our main result.

Theorem 4.4. An irreducible finite reflection group G is regular if and only if G is

either a Coxeter group or of rank one.

Proof. The implication ⇐ is well known (see 3.1); so it suffices to show that if G is

irreducible, complex and has rank greater than 1 then G is not regular. Assume, for a

contradiction, that G is such a group and is regular. Then G must satisfy the conditions

(1) and (2) of Lemma 4.2. According to the classification of the irreducible finite complex

reflection groups, G can only be one of the groups G8, G12, G24 by [2; 5]. Since the

cardinality of any root line in a root system of G12 or G24 is 2, this implies that none of

these two groups is regular by Lemma 4.2 (3). Finally, G8 is not regular, by 4.3 above.

This proves our result. �
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