Projective functors and their applications I

Joshua Ciappara

31/05/19

1 Introduction and motivation

• Let \mathfrak{g} be a semisimple Lie algebra over an algebraically closed field k of characteristic 0. Set $U = U(\mathfrak{g})$ and let Z = Z(U) be its centre (the ring of Laplace operators).

• Following Bernstein's classic paper, we define and investigate projective functors arising from finite-dimensional \mathfrak{g} -modules V. These are endofunctors of the category \mathscr{M}_{Zf} of Z-finite \mathfrak{g} -modules, occurring as direct summands of the functor

 $F_V: \mathscr{M}_{Zf} \to \mathscr{M}_{Zf}, \quad M \mapsto V \otimes M.$

When restricted to a category $\mathscr{M}(\theta)$ of \mathfrak{g} -modules with fixed central character θ , projective functors and their morphisms are well behaved, and admit easy classifications.

• Goal today: See/prove the main theorems on projective functors, then apply them in two directions: finding equivalences $\mathcal{M}(\theta) \cong \mathcal{M}(\theta')$ for certain pairs (θ, θ') , and producing an easy proof of Duflo's theorem.

2 Preliminaries

2.1 Category theory

 \bullet All categories and functors are assumed to be k-linear, unless otherwise stated.

• If \mathscr{B} is a complete subcategory of the abelian category \mathscr{A} , and \mathscr{B} is closed under subquotients, then \mathscr{B} is abelian too.

• Suppose \mathscr{A} is an abelian category containing a class of objects \mathscr{P} closed under direct sums. An object A is \mathscr{P} -generated in case there exists an exact sequence

$$P \to A \to 0$$

in \mathscr{A} , and \mathscr{P} -presented in case there is an exact sequence

$$P' \to P \to A \to 0$$

in \mathscr{A} . The full subcategory of \mathscr{P} -presentable objects in \mathscr{A} is denoted $\mathscr{A}_{\mathscr{P}}$.

• The opposite algebra of an associative unital k-algebra A is denoted A° . Thus (A, B)-bimodules X may be identified with left $A \otimes B^{\circ}$ -modules. Write A^2 for the algebra $A \otimes A^{\circ}$.

• Let us denote by h(X) the functor of tensoring induced by X:

$$h(X): B\operatorname{-mod} \to A\operatorname{-mod}, \quad M \mapsto X \otimes_B M.$$

Recall that, by definition, a *right continuous* functor is right exact and commutes with inductive limits.

• Theorem 2.1 (Watt): Let \mathscr{C} be the full subcategory of right continuous functors within the category of functors B-mod $\rightarrow A$ -mod. Then the functor

$$h: (A, B)$$
-bimod $\to \mathscr{C}, \quad X \mapsto h(X)$

is an equivalence of categories.

2.2 Lie theory

• Standard notation:

- (i) $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra, dual to the space \mathfrak{h}^* of weights of \mathfrak{g} .
- (ii) R^+ is a choice of positive roots inside the root system R, with half-sum ρ and corresponding nilpotent sublagebra \mathfrak{n}^+
- (iii) To each $\gamma \in R$ corresponds the dual root $h_{\gamma} \in \mathfrak{h}$ and the reflection σ_{γ} ,

$$\sigma_{\gamma}: \mathfrak{h}^* \to \mathfrak{h}^*, \quad \sigma_{\gamma}(\chi) = \chi - \chi(h_{\gamma})\gamma;$$

these generate the Weyl group $W = \langle \sigma_{\gamma} \rangle$.

- (iv) $\Lambda = \{\chi \in \mathfrak{h}^* : \chi(h_{\gamma}) \in \mathbb{Z} \text{ for all } \gamma \in R\}$ is the lattice of integer weights, containing the sublattice Γ generated by R.
- (v) Given $\chi \in \mathfrak{h}^*$, let R_{χ} denote the set of $\gamma \in R$ for which $\chi(h_{\gamma}) \in \mathbb{Z}$, and let

$$W_{\chi} = \operatorname{Stab}_{W}(\chi), \quad W_{\chi+\Gamma} = \operatorname{Stab}_{W}(\chi+\Gamma)$$

be stabilisers with respect to the action of W on \mathfrak{h}^* and \mathfrak{h}^*/Γ . Recall that we call χ regular in case W_{χ} is trivial.

(vi) $|\chi|$ denotes the length of $\chi \in \mathfrak{h}^*$ with respect to some W-invariant inner product on Λ .

• A partial order on \mathfrak{h}^* : Given $\gamma \in \mathbb{R}^+$, write

$$\psi <_{\gamma} \chi \quad \text{for } \psi, \chi \in \mathfrak{h}^*$$

whenever $\psi = \sigma_{\gamma}(\chi)$ and $\chi(h_{\gamma}) \in \mathbb{Z}^+$. We then let $\psi < \chi$ whenever there exist

$$\psi = \psi_0, \dots, \psi_n = \chi \in \mathfrak{h}^*, \quad \gamma_1, \dots, \gamma_n$$

such that $\psi_i <_{\gamma_{i+1}} \psi_{i+1}$ for all *i*. (So < is the transitive closure of all the $<_{\gamma}$.) Call χ dominant if it is <-maximal.

• Central characters of \mathfrak{g} : $\Theta = \operatorname{Hom}(Z, k)$. The kernel $J_{\theta} \subseteq Z$ of $\theta \in \Theta$ is clearly a maximal ideal.

• Denote by $\eta^* : Z \to S(\mathfrak{h})$ the Harish–Chandra homomorphism. Identifying $S(\mathfrak{h})$ with the set of polynomial functions on \mathfrak{h}^* , we obtain a dual map

$$\eta: \mathfrak{h}^* \to \Theta, \quad \eta(\chi)(z) = \eta^*(z)(\chi).$$

• Theorem 2.2 (Harish–Chandra): η is an epimorphism with fibres

$$\eta^{-1}(\eta(\chi)) = W(\chi).$$

• Any (U, U)-bimodule Y admits an adjoint action of \mathfrak{g} given by

$$X \cdot u = Xu - uX, \quad X \in \mathfrak{g}, u \in U;$$

denote the resulting \mathfrak{g} -module by Y^{ad} .

• Theorem 2.3 (Kostant): For any finite-dimensional \mathfrak{g} -module U, $\operatorname{Hom}_{\mathfrak{g}}(L, U^{\operatorname{ad}})$ is naturally a free Z-module of rank equal to the multiplicity of the zero weight in L.

- Some key categories of U-modules: Full inside of $\mathcal{M} = U$ -mod:
 - $\mathcal{M}_f = \{ \text{finitely generated } U \text{-modules} \}, \quad \mathcal{M}_{Zf} = \{ Z \text{-finite } U \text{-modules} \}.$

For $\theta \in \Theta$ and $n \geq 1$, set $U_{\theta}^n = U_{\theta}/J_{\theta}^n$ and

$$\mathscr{M}^{n}(\theta) = \{M \in \mathscr{M} : J_{\theta}^{n}M = 0\} = U_{\theta}^{n} \operatorname{-mod}$$

 $\mathscr{M}^{\infty}(\theta) = \{ M \in \mathscr{M} : \text{for all } m \in M \text{ there exists } n \geq 1 \text{ such that } J^n_{\theta}m = 0 \},$

suppressing the superscript for the case n = 1.

• Elementary fact: each Z-finite module M admits a unique decomposition

$$M = \bigoplus_{\theta \in \Theta} M_{\theta}, \quad M_{\theta} \in \mathscr{M}^{\infty}(\theta).$$

• Hence $\mathscr{M}_{Zf} \cong \prod_{\theta} \mathscr{M}^{\infty}(\theta)$ and we obtain projection functors

$$\Pr(\theta) : \mathscr{M}_{Zf} \to \mathscr{M}^{\infty}(\theta).$$

• Also have subcategory $\mathcal{O} \subseteq \mathscr{M}_{Zf}$, containing the Verma module

$$M_{\chi} = U/U(I_{\chi-\rho} + \mathfrak{n});$$

 $I_{\chi-\rho}$ is the ideal in $U(\mathfrak{h}) \subseteq U$ generated by the elements $h - (\chi - \rho)(h)$.

• Verma properties to recall:

- (i) The unique and pairwise non-isomorphic simple quotients L_{χ} of the M_{χ} exhaust the simple modules in \mathcal{O} .
- (ii) The natural homomorphism $Z \to \operatorname{End}_{\mathfrak{g}}(M_{\chi}) = k$ coincides with the character $\eta(\chi)$.
- (iii) There is a unique indecomposable projective object $P_{\chi} \in \mathcal{O}$ mapping onto L_{χ} ; these projective objects admit a filtration by Verma modules. The common value

$$d_{\chi\psi} = [M_{\chi} : L_{\chi}] = \dim \operatorname{Hom}(P_{\psi}, M_{\chi})$$

satisfies $d_{\chi\psi} > 0$ if and only if $\chi > \psi$, and $d_{\chi\chi} = 1$.

(iv) The classes $\delta_{\chi} = [M_{\chi}]$ form an free basis of the Grothendieck group $K(\mathcal{O})$. The unique inner product $\{-, -\}$ on $K(\mathcal{O})$ for which that basis is orthonormal is also clearly W-invariant with respect to the action $w \cdot \delta_{\chi} = \delta_{w\chi}$.

3 Projective functors

3.1 First properties

• Some of the main actors in our story are the functors

$$F_V: \mathscr{M} \to \mathscr{M}, \quad M \mapsto V \otimes M,$$

where V is a finite-dimensional \mathfrak{g} -module.

• Immediate properties:

- (i) F_V is exact and commutes with arbitrary direct sums and products.
- (ii) g-morphisms $\varphi: V_1 \to V_2$ induce natural transformations $F_{V_1} \to F_{V_2}$.
- (iii) We have $F_{V_1} \circ F_{V_2} \cong F_{V_1 \otimes V_2}$ and a biadjunction (F_{V^*}, F_V) . (Here V^* is the dual of V, with respect to some anti-involution of \mathfrak{g} fixing points of \mathfrak{h} .)
- (iv) Suppose V has weights μ_1, \ldots, μ_n (with multiplicity). Then $F_V(M_{\chi})$ has a filtration with quotients $M_{\chi+\mu_i}$, $1 \le i \le n$.

• To V we also associate the (U, U)-bimodule $\Phi_V = V \otimes U$, where the left and right actions are

$$X(v \otimes u) = Xv \otimes u + v \otimes Xu, \quad (v \otimes u)X = v \otimes uX.$$

• Lemma 3.1:

- (i) $h(\Phi_V) \cong F_V$.
- (ii) $\operatorname{Hom}_{U^2}(\Phi_V, Y) \cong \operatorname{Hom}_{\mathfrak{g}}(V, Y^{\operatorname{ad}})$ for any (U, U)-bimodule Y.
- (iii) Φ_V is U-generated on both sides by its subset $V = V \otimes 1$.

• Corollary 3.2: F_V preserves the subcategories \mathcal{M}_f and \mathcal{O} in \mathcal{M} , and also preserves projective objects in all three categories.

Proof. F_V is exact and $F_V(U) = \Phi_V$ is finitely generated by Lemma 3.1(iii), so $F_V(\mathcal{M}_f) \subseteq \mathcal{M}_f$. Moreover, if $M \in \mathcal{O}$, then $F_V(M)$ is \mathfrak{h} -diagonalisable and $U(\mathfrak{n}^+)$ -finite because $V \in \mathcal{O}$, and we have already seen it is finitely generated. So $F_V(\mathcal{O}) \subseteq \mathcal{O}$.

The remaining statement follows from a general fact: functors with exact right adjoints always preserve projectives. $\hfill\square$

3.2 Another Kostant theorem

• Have a Z^2 -action on the functor F_V , i.e. a ring map $Z^2 \to \text{End}(F_V)$:

$$z \cdot (v \otimes m) = \sum a_i (v \otimes b_i m), \text{ for } z = \sum_i a_i \otimes b_i \in Z^2$$

• This is the action obtained by transport of structure from the action of $Z^2 \subseteq U^2$ on Φ_V to F_V via the equivalence h.

• Let I_V denote the kernel of the action:

$$I_V = \{ z \in Z^2 : z(V \otimes M) = 0 \text{ for all } M \in \mathscr{M} \}.$$

• Note the embedding

$$\eta^* \otimes \eta^* : Z^2 \hookrightarrow S(\mathfrak{h}) \otimes S(\mathfrak{h}) = S(\mathfrak{h} \oplus \mathfrak{h}) = P(\mathfrak{h}^* \oplus \mathfrak{h}^*);$$

since η^* identifies Z with $S(\mathfrak{h})^W$, the image of $\eta^* \otimes \eta^*$ consists of polynomials $Q(\psi, \chi)$ which are W-invariant in each variable.

• Theorem 3.3 (Kostant): Let Q be the image of some $z \in Z^2$. Then $z \in I_V$ if and only if $Q(\chi + \mu, \chi)$ is the zero polynomial for any weight $\mu \in P(V)$.

• Corollary 3.4:

- (i) Z^2/I_V is finitely generated over Z.
- (ii) $F_V(\mathscr{M}_{Zf}) \subseteq \mathscr{M}_{Zf}$.

Proof. Define $A = S(\mathfrak{h}), B = S(\mathfrak{h})^W$, and

$$J = \{ Q \in A^2 : Q(\chi + \mu, \chi) = 0 \text{ for any } \mu \in P(V) \}.$$

Then J is an ideal in A^2 and $J_V = J \cap B^2$ is an ideal in B^2 . Claim (i) is equivalent to saying B^2/J_V is finitely generated over B.

By the theorem, there is a B-module embedding

$$i = \bigoplus_{\mu} i_{\mu} : B^2/J_V \to \bigoplus_{\mu \in P(V)} A_{\mu}$$

where $i_{\mu}(Q)(\chi) = Q(\chi + \mu, \chi)$. But A is finitely generated as a B-module because W is finite, so by Noetherianity of B we conclude B^2/J_V is finitely generated over B.

It remains to prove (ii). Exercise from (i): Given a g-module with JM = 0 for some finite-codimension ideal $J \subseteq Z$, cook up a finite-codimension ideal $J' \subseteq Z$ with $J'(V \otimes M) = 0$. Then since F_V commutes with direct limits, we get $F_V(\mathcal{M}_{Zf}) \subseteq \mathcal{M}_{Zf}$.

3.3 Functor decomposition and the main results

• We have seen that F_V preserves \mathscr{M}_{Zf} ; let $F_{V,Zf}$ denote its restriction to this subcategory.

• **Definition 3.5:** Direct summands of $F_{V,Zf}$ are known as *projective func*tors.

• Every projective functor decomposes into a direct sum of indecomposable projective functors; ultimately we will describe these indecomposables.

- **Proposition 3.6:** Let *F*, *G* be projective functors.
 - (i) F is exact and preserves direct sums and products.
- (ii) Direct summands of F are projective; the functors $F \oplus G$ and $F \circ G$ are projective.
- (iii) F has projective right and left adjoints.
- (iv) $F = \bigoplus_{\theta, \theta'} \Pr_{\theta'} \circ F \circ \Pr_{\theta}$ and each of these summands are projective.
- To parametrise projective functors, we require the sets

$$\Xi^0 = \{ (\psi, \chi) \in (\mathfrak{h}^*)^2 : \psi - \chi \in \Lambda \}, \quad \Xi = \Xi^0 / W,$$

where the quotient is by the component-wise W-action.

• Every element $\xi \in \Xi$ has a proper representative (ψ, χ) , by which we mean that χ is dominant and $\psi \leq W_{\chi}(\psi)$. There is a well-defined map

$$\eta^r: \Xi \to \Theta, \quad \eta^r(\psi, \chi) = \eta(\chi).$$

• Theorem A:

- (i) Each projective functor decomposes into a direct sum of indecomposable projective functors.
- (ii) To each $\xi \in \Xi$ there corresponds an indecomposable projective functor F_{ξ} , unique up to isomorphism with the following properties:
 - $F_{\xi}(M_{\varphi}) = 0$ if $\eta^r(\xi) \neq \eta(\varphi), \varphi \in \mathfrak{h}^*$.
 - If $\xi = (\psi, \chi)$ is written properly, then $F_{\xi}(M_{\chi}) = P_{\psi}$.
- (iii) $\xi \mapsto F_{\xi}$ defines a bijection from Ξ to the set of isomorphism classes of indecomposable projective functors.

Among other things, the next result reveals the remarkable fact that projective functors are determined by their induced action on $K(\mathcal{O})$.

- **Theorem B:** Suppose F, G are projective functors. Then:
 - (i) If [F] = [G], then F is naturally isomorphic to G.
- (ii) If (F, G) is an adjoint pair, then ([F], [G]) is a conjugate pair on the inner product space $K(\mathcal{O})$.
- (iii) [F] is W-equivariant.

• Theorems A and B allow us to compute $[F_{\xi}]$ explicitly. In particular, $[F_{\xi}](\delta_{\varphi}) = 0$ if $\varphi \notin W(\chi)$ and $[F_{\xi}](\delta_{w(\chi)}) = \sum_{\varphi > \psi} d_{\varphi,\psi} \delta_{w\varphi}$, so understanding F reduces to knowledge of the $d_{\varphi\psi}$.

• Definition 3.7: Let $\theta \in \Theta$ and let $F(\theta)$ denote the restriction of a projective functor to $\mathcal{M}(\theta)$. A projective θ -functor $F : \mathcal{M}(\theta) \to \mathcal{M}$ is any direct summand of a functor $F_V(\theta)$.

• The third and final theorem in this section underpins the proofs of the previous two.

• **Theorem C:** Let F, G be projective θ -functors, $\chi \in \eta^{-1}(\theta)$. Then

 $i_{\chi} : \operatorname{Hom}(F,G) \to \operatorname{Hom}(FM_{\chi},GM_{\chi}), \quad i_{\chi}(\varphi) = \varphi_{M_{\chi}}$

is a monomorphism, and an isomorphism if χ is dominant.

Proof sketch. By considering decompositions $F_V(\theta) = F \oplus F', G_L(\theta) = G \oplus G'$, we reduce to the case $F = F_V(\theta)$ and $G = G_L(\theta)$. To prove injectivity of i_{χ} , need the following fact: If $\chi \in \eta^{-1}(\theta)$ is a weight and $u \in U_{\theta}$, then $uM_{\chi} = 0$ implies u = 0.

The isomorphism for χ dominant is proven by counting dimensions using Kostant's theorem 2.3.

• We need some subsidiary information before we can proceed to the proofs of the other two theorems. Namely, we will need to see that the restriction

$$F^{\infty}(\theta): \mathscr{M}^{\infty}(\theta) \to \mathscr{M}$$

of a projective F is determined by the restrictions $F^n(\theta) : \mathcal{M}^n(\theta) \to \mathcal{M}$.

• **Proposition 3.8:** Suppose F, G are projective functors. Then any natural transformation

$$\varphi: F(\theta) \to G(\theta)$$

admits a lift $\widehat{\varphi} : F^{\infty}(\theta) \to G^{\infty}(\theta)$. If φ is an isomorphism, then so is $\widehat{\varphi}$; if F = G, then any idempotent φ can be lifted to an idempotent $\widehat{\varphi}$.

Proof. Let $H^n = \text{Hom}(F^n(\theta), G^n(\theta)), 1 \leq n \leq \infty$, and let $r_{nm} : H^n \to H^m$ denote the obvious restriction maps, $m \leq n$, so we have an inverse system.

Firstly, we have that $H^{\infty} = \lim_{\theta \to \infty} H^n$. This is because F commutes with direct limits and modules $M \in \mathscr{M}^{\infty}(\overline{\theta})$ can be expressed as follows:

$$M = \varinjlim M^n, \quad M^n = \{ m \in M : J^n_\theta m = 0 \} \in \mathscr{M}^n(\theta).$$

As in the sketch of Theorem C, we may assume $F = F_V$, $G = F_L$. Then, exercise (use Watt's theorem and Lemma 3.1):

$$H^n = (\operatorname{Hom}_{\mathfrak{q}}(L^* \otimes V, U^{\operatorname{ad}}))/J^n_{\theta}$$

So H^{∞} is a J_{θ} -adic completion. Then $H^n = H^{\infty}/J^n_{\theta}$, so in particular $\varphi \in H^1$ can always be lifted to some $\widehat{\varphi} \in H^{\infty}$.

Suppose φ is an isomorphism, inverse ψ . To prove $\widehat{\varphi}$ is an isomorphism, it suffices to prove $\widehat{\varphi}\widehat{\psi}$ and $\widehat{\psi}\widehat{\varphi}$ are invertible, so for that reason we can assume F = G and $\varphi = 1$. But then $\widehat{\varphi} = 1 - \alpha$ for some $\alpha \in J_{\theta}$, which is a unit in H^{∞} .

We omit the proof that an idempotent φ has an idempotent lift.

• Theorem C + Proposition 3.8 = Corollary 3.9: Suppose F, G are projective functors, χ a dominant weight with $\theta = \eta(\chi)$. Any isomorphism $FM_{\chi} \cong GM_{\chi}$ lifts to an isomorphism $F^{\infty}(\theta) \cong G^{\infty}(\theta)$, and any \mathfrak{g} -module decomposition $FM_{\chi} \cong \bigoplus_{i} M_{i}$ lifts to a decomposition $F^{\infty}(\theta) = \bigoplus F_{i}$ with $F_{i}M_{\chi} = M_{i}$.

• If F is a projective functor, then F is the direct sum of its restrictions to the subcategories $\mathscr{M}^{\infty}(\theta)$; that is,

$$F = \bigoplus_{\theta} F \circ \Pr(\theta).$$

• Now, by the corollary, $F \circ \Pr(\theta)$ splits into a direct sum of (finitely many) indecomposable projective functors, according to the direct sum decomposition of FM_{χ} . Thus we obtain Theorem A(i).

• Remark 3.10: If F is an indecomposable projective functor, then $F = F \circ \Pr(\theta)$ for some $\theta \in \Theta$. Thus $FM_{\chi} = 0$ whenever $\eta(\chi) \neq \theta$. On the other hand, if $\chi \in \eta^{-1}(\theta)$ is dominant, then $M_{\chi} = P_{\chi}$ is an indecomposable projective and hence $FM_{\chi} = P_{\psi}$ for some $\psi \in \mathfrak{h}^*$.

• Proof of Theorem B. For the first point, suppose [F] = [G]. By the previous discussion, it is equivalent to prove $FM_{\chi} \cong GM_{\chi}$ for any dominant weight χ . But FM_{χ} and GM_{χ} are projective objects in \mathcal{O} , whose isomorphism classes are recoverable from their images in $K(\mathcal{O})$.

For the second point, we need to prove $\{[F]x, y\} = \{x, [G]y\}$ for all $x, y \in K(\mathcal{O})$. We can assume x = [P] is the class of a projective, since the classes of projective objects span $K(\mathcal{O})$. Then use the assumed adjunction and the formula

 $\{[P], [M]\} = \dim \operatorname{Hom}(P, M), P \text{ projective, } M \text{ arbitrary in } \mathcal{O}.$

We omit the rather lengthy proof of [F]'s W-equivariance.

• All that remains is to prove the classification results of Theorem A(ii),(iii).

Proof. Given a projective functor F, we define a quantity

$$a_F: (\mathfrak{h}^*)^2 \to \mathbb{Z}, \quad a_F(\psi, \chi) = \{d_{\psi}, [F]\delta_{\chi}\}.$$

In fact a_F lands in \mathbb{N} . Indeed, if χ is dominant, then FM_{χ} is projective and $a_F(\psi, \chi) \geq 0$ for any ψ (consider an appropriate Hom space); then use W-equivariance of [F] to deduce that $a_F(\psi, \chi) \geq 0$ always.

Next consider the subsets

$$S(F) = \{(\psi, \chi) : a_F(\psi, \chi) > 0\},\$$

 $S^{\max}(F) = \{(\psi, \chi) \in S(F) : |\psi - \chi| \text{ maximal}\}.$

By non-negativity of a_F , we get that

$$F = \oplus_i F_i \quad \Rightarrow \quad S(F) = \cup_i S(F_i)$$

so that, since $S(F_V) \subseteq \Xi^0$, the same is true for S(F). (Similarly $S^{\max}(F) \subseteq \cup_i S^{\max}(F_i)$.) Both S(F) and $S^{\max}(F)$ are preserved by W, due to the W-equivariance of [F].

Suppose F is indecomposable. Then $S^{\max}(F)/W$ consists of a single point. Indeed, if $F = F \circ \Pr(\theta)$ and $\chi \in \eta^{-1}(\theta)$ is dominant, then $FM_{\chi} = P_{\psi}$ and we get $S^{\max}(F) = W(\psi, \chi)$ (exercise).

To each indecomposable projective functor F we have associated a $\xi \in \Xi$, such that if ξ is written properly, then $FM_{\chi} = P_{\psi}$. And each $\xi = (\psi, \chi)$ arises

thus: If V is a finite-dimensional \mathfrak{g} -module with extremal weight $\psi - \chi$, then $(\psi, \chi) \in S^{\max}(F_V)$ and therefore $(\psi, \chi) \in S^{\max}(F)$ for some indecomposable summand F of F_V .

4 Applications

4.1 Equivalences between categories $\mathcal{M}(\theta)$

• Theorem 4.1: For $\theta, \theta' \in \Theta$, let $F_{\theta',V,\theta} = \Pr(\theta') \circ F \circ \Pr(\theta) : \mathscr{M}^{\infty}(\theta) \to \mathscr{M}^{\infty}(\theta')$. Suppose we have dominant weights $\chi \in \eta^{-1}(\theta), \psi \in \eta^{-1}(\theta')$ such that $W_{\chi} = W_{\psi}$ and $\lambda = \psi - \chi \in \Lambda$. Then

$$F_{\theta',V,\theta}:\mathscr{M}^{\infty}(\theta)\to\mathscr{M}^{\infty}(\theta'),\quad F_{\theta,V^*,\theta'}:\mathscr{M}^{\infty}(\theta')\to\mathscr{M}^{\infty}(\theta),$$

are inverse equivalences of categories, where V is a finite-dimensional \mathfrak{g} -module with extremal weight λ .

Proof. Let $F = F_{\theta',V,\theta}$, $G = F_{\theta,V^*,\theta'}$. Remembering λ is an extremal weight of V (so that $-\lambda$ is such for V^*), one can show that (exercise)

$$FM_{\chi} = M_{\psi}, \quad GM_{\psi} = M_{\chi}.$$

Hence $GFM_{\chi} = M_{\chi}$, so the theorem provides that $GF \cong Pr(\theta)$; similarly $FG \cong Pr(\theta')$. By restricting F, G to $\mathcal{M}(\theta), \mathcal{M}(\theta')$, we deduce that they are categorical equivalences.

- The following observations of Bernstein refine earlier results of Zuckerman:
 - (i) Let \mathscr{H} be any complete subcategory of \mathscr{M} preserved by all functors F_V , e.g. $\mathscr{H} = \mathcal{O}$. The same proof method shows that the intersections of \mathscr{H} with $\mathscr{M}^{\infty}(\theta)$ and $\mathscr{M}^{\infty}(\theta')$ are equivalent.
- (ii) If we assume just an inequality of stabilisers $W_{\psi} \subseteq W_{\chi}$, then (in the notation of the proof) we conclude $GF \cong \mathrm{Id}^{\oplus |W_{\chi}:W_{\psi}|}$.

4.2 Lattices of two-sided ideals and submodules

• Notation: Suppose χ is a dominant weight with $\eta(\chi) = \theta$. Let Ω_{θ} be the lattice of two-sided ideals in U_{θ} ; let Ω_{χ} be the submodule lattice of M_{χ} .

- **Theorem 4.2:** Let χ be a dominant weight, $\theta = \eta(\chi)$.
 - (i) The mapping

$$\nu: \Omega_{\theta} \to \Omega_{\chi}, \quad \nu(J) = JM_{\chi}$$

is an embedding, and a lattice isomorphism if χ is regular.

(ii) Let \mathscr{P} be the class of modules isomorphic to direct sums of P_{ψ} for $\psi < \chi$ and $\psi \leq W_{\chi}(\psi)$. Then the image of ν consists of the \mathscr{P} -generated submodules of M_{χ} .

4.3 Duflo's theorem

The result in the previous section allows for an easy re-derivation of Duflo's famous theorem.

• Theorem 4.3 (Duflo): Let $J \in \Omega_{\theta}$ be a two-sided prime ideal. Then a weight $\psi \in \eta^{-1}(\theta)$ exists such that $J = \operatorname{Ann} L_{\psi}$.

Proof. Take $\chi \in \eta^{-1}(\theta)$ dominant. Let L_1, \ldots, L_n be the composition factors of the module $M = M_{\chi}/JM_{\chi}$, with annihilators $I_i \subseteq U_{\theta}$. Certainly $J \subseteq I_i$ for all *i*, and the product $I = I_1 \cdots I_n$ annhilates M. It follows from section 4.2 that $I \subseteq J$. Invoking that J is prime gives $J = I_i$ for some *i*. But now from our knowledge of M_{χ} , we have that $L_i = L_{\psi}$ for some $\psi < \chi$, and the result follows.