Projective functors and their applications I

Joshua Ciappara

31/05/19

1 Introduction and motivation

- Let \mathfrak{g} be a semisimple Lie algebra over an algebraically closed field k of characteristic 0 . Set $U=U(\mathfrak{g})$ and let $Z=Z(U)$ be its centre (the ring of Laplace operators).
- Following Bernstein's classic paper, we define and investigate projective functors arising from finite-dimensional \mathfrak{g}-modules V. These are endofunctors of the category $\mathscr{M}_{Z f}$ of Z-finite \mathfrak{g}-modules, occurring as direct summands of the functor

$$
F_{V}: \mathscr{M}_{Z f} \rightarrow \mathscr{M}_{Z f}, \quad M \mapsto V \otimes M .
$$

When restricted to a category $\mathscr{M}(\theta)$ of \mathfrak{g}-modules with fixed central character θ, projective functors and their morphisms are well behaved, and admit easy classifications.

- Goal today: See/prove the main theorems on projective functors, then apply them in two directions: finding equivalences $\mathscr{M}(\theta) \cong \mathscr{M}\left(\theta^{\prime}\right)$ for certain pairs $\left(\theta, \theta^{\prime}\right)$, and producing an easy proof of Duflo's theorem.

2 Preliminaries

2.1 Category theory

- All categories and functors are assumed to be k-linear, unless otherwise stated.
- If \mathscr{B} is a complete subcategory of the abelian category \mathscr{A}, and \mathscr{B} is closed under subquotients, then \mathscr{B} is abelian too.
- Suppose \mathscr{A} is an abelian category containing a class of objects \mathscr{P} closed under direct sums. An object A is \mathscr{P}-generated in case there exists an exact sequence

$$
P \rightarrow A \rightarrow 0
$$

in \mathscr{A}, and \mathscr{P}-presented in case there is an exact sequence

$$
P^{\prime} \rightarrow P \rightarrow A \rightarrow 0
$$

in \mathscr{A}. The full subcategory of \mathscr{P}-presentable objects in \mathscr{A} is denoted $\mathscr{A} \mathscr{P}$.

- The opposite algebra of an associative unital k-algebra A is denoted A°. Thus (A, B)-bimodules X may be identified with left $A \otimes B^{\circ}$-modules. Write A^{2} for the algebra $A \otimes A^{\circ}$.
- Let us denote by $h(X)$ the functor of tensoring induced by X :

$$
h(X): B-\bmod \rightarrow A-\bmod , \quad M \mapsto X \otimes_{B} M .
$$

Recall that, by definition, a right continuous functor is right exact and commutes with inductive limits.

- Theorem 2.1 (Watt): Let \mathscr{C} be the full subcategory of right continuous functors within the category of functors B-mod $\rightarrow A$-mod. Then the functor

$$
h:(A, B)-\operatorname{bimod} \rightarrow \mathscr{C}, \quad X \mapsto h(X)
$$

is an equivalence of categories.

2.2 Lie theory

- Standard notation:

(i) $\mathfrak{h} \subset \mathfrak{g}$ is a Cartan subalgebra, dual to the space \mathfrak{h}^{*} of weights of \mathfrak{g}.
(ii) R^{+}is a choice of positive roots inside the root system R, with half-sum ρ and corresponding nilpotent sublagebra \mathfrak{n}^{+}
(iii) To each $\gamma \in R$ corresponds the dual root $h_{\gamma} \in \mathfrak{h}$ and the reflection σ_{γ},

$$
\sigma_{\gamma}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}, \quad \sigma_{\gamma}(\chi)=\chi-\chi\left(h_{\gamma}\right) \gamma ;
$$

these generate the Weyl group $W=\left\langle\sigma_{\gamma}\right\rangle$.
(iv) $\Lambda=\left\{\chi \in \mathfrak{h}^{*}: \chi\left(h_{\gamma}\right) \in \mathbb{Z}\right.$ for all $\left.\gamma \in R\right\}$ is the lattice of integer weights, containing the sublattice Γ generated by R.
(v) Given $\chi \in \mathfrak{h}^{*}$, let R_{χ} denote the set of $\gamma \in R$ for which $\chi\left(h_{\gamma}\right) \in \mathbb{Z}$, and let

$$
W_{\chi}=\operatorname{Stab}_{W}(\chi), \quad W_{\chi+\Gamma}=\operatorname{Stab}_{W}(\chi+\Gamma)
$$

be stabilisers with respect to the action of W on \mathfrak{h}^{*} and $\mathfrak{h}^{*} / \Gamma$. Recall that we call χ regular in case W_{χ} is trivial.
(vi) $|\chi|$ denotes the length of $\chi \in \mathfrak{h}^{*}$ with respect to some W-invariant inner product on Λ.

- A partial order on \mathfrak{h}^{*} : Given $\gamma \in R^{+}$, write

$$
\psi<_{\gamma} \chi \quad \text { for } \psi, \chi \in \mathfrak{h}^{*}
$$

whenever $\psi=\sigma_{\gamma}(\chi)$ and $\chi\left(h_{\gamma}\right) \in \mathbb{Z}^{+}$. We then let $\psi<\chi$ whenever there exist

$$
\psi=\psi_{0}, \ldots, \psi_{n}=\chi \in \mathfrak{h}^{*}, \quad \gamma_{1}, \ldots, \gamma_{n}
$$

such that $\psi_{i}<_{\gamma_{i+1}} \psi_{i+1}$ for all i. (So $<$ is the transitive closure of all the $<_{\gamma}$.) Call χ dominant if it is $<$-maximal.

- Central characters of $\mathfrak{g}: \Theta=\operatorname{Hom}(Z, k)$. The kernel $J_{\theta} \subseteq Z$ of $\theta \in \Theta$ is clearly a maximal ideal.
- Denote by $\eta^{*}: Z \rightarrow S(\mathfrak{h})$ the Harish-Chandra homomorphism. Identifying $S(\mathfrak{h})$ with the set of polynomial functions on \mathfrak{h}^{*}, we obtain a dual map

$$
\eta: \mathfrak{h}^{*} \rightarrow \Theta, \quad \eta(\chi)(z)=\eta^{*}(z)(\chi)
$$

- Theorem 2.2 (Harish-Chandra): η is an epimorphism with fibres

$$
\eta^{-1}(\eta(\chi))=W(\chi)
$$

- Any (U, U)-bimodule Y admits an adjoint action of \mathfrak{g} given by

$$
X \cdot u=X u-u X, \quad X \in \mathfrak{g}, u \in U
$$

denote the resulting \mathfrak{g}-module by $Y^{\text {ad }}$.

- Theorem 2.3 (Kostant): For any finite-dimensional \mathfrak{g}-module $U, \operatorname{Hom}_{\mathfrak{g}}\left(L, U^{\text {ad }}\right)$ is naturally a free Z-module of rank equal to the multiplicity of the zero weight in L.
- Some key categories of U-modules: Full inside of $\mathscr{M}=U$-mod:

$$
\mathscr{M}_{f}=\{\text { finitely generated } U \text {-modules }\}, \quad \mathscr{M}_{Z f}=\{Z \text {-finite } U \text {-modules }\} .
$$

For $\theta \in \Theta$ and $n \geq 1$, set $U_{\theta}^{n}=U_{\theta} / J_{\theta}^{n}$ and

$$
\mathscr{M}^{n}(\theta)=\left\{M \in \mathscr{M}: J_{\theta}^{n} M=0\right\}=U_{\theta}^{n}-\bmod
$$

$\mathscr{M}^{\infty}(\theta)=\left\{M \in \mathscr{M}:\right.$ for all $m \in M$ there exists $n \geq 1$ such that $\left.J_{\theta}^{n} m=0\right\}$,
suppressing the superscript for the case $n=1$.

- Elementary fact: each Z-finite module M admits a unique decomposition

$$
M=\bigoplus_{\theta \in \Theta} M_{\theta}, \quad M_{\theta} \in \mathscr{M}^{\infty}(\theta)
$$

- Hence $\mathscr{M}_{Z f} \cong \prod_{\theta} \mathscr{M}^{\infty}(\theta)$ and we obtain projection functors

$$
\operatorname{Pr}(\theta): \mathscr{M}_{Z f} \rightarrow \mathscr{M}^{\infty}(\theta)
$$

- Also have subcategory $\mathcal{O} \subseteq \mathscr{M}_{Z f}$, containing the Verma module

$$
M_{\chi}=U / U\left(I_{\chi-\rho}+\mathfrak{n}\right)
$$

$I_{\chi-\rho}$ is the ideal in $U(\mathfrak{h}) \subseteq U$ generated by the elements $h-(\chi-\rho)(h)$.

- Verma properties to recall:

(i) The unique and pairwise non-isomorphic simple quotients L_{χ} of the M_{χ} exhaust the simple modules in \mathcal{O}.
(ii) The natural homomorphism $Z \rightarrow \operatorname{End}_{\mathfrak{g}}\left(M_{\chi}\right)=k$ coincides with the character $\eta(\chi)$.
(iii) There is a unique indecomposable projective object $P_{\chi} \in \mathcal{O}$ mapping onto L_{χ}; these projective objects admit a filtration by Verma modules. The common value

$$
d_{\chi \psi}=\left[M_{\chi}: L_{\chi}\right]=\operatorname{dim} \operatorname{Hom}\left(P_{\psi}, M_{\chi}\right)
$$

satisfies $d_{\chi \psi}>0$ if and only if $\chi>\psi$, and $d_{\chi \chi}=1$.
(iv) The classes $\delta_{\chi}=\left[M_{\chi}\right]$ form an free basis of the Grothendieck group $K(\mathcal{O})$. The unique inner product $\{-,-\}$ on $K(\mathcal{O})$ for which that basis is orthonormal is also clearly W-invariant with respect to the action $w \cdot \delta_{\chi}=\delta_{w \chi}$.

3 Projective functors

3.1 First properties

- Some of the main actors in our story are the functors

$$
F_{V}: \mathscr{M} \rightarrow \mathscr{M}, \quad M \mapsto V \otimes M
$$

where V is a finite-dimensional \mathfrak{g}-module.

- Immediate properties:

(i) F_{V} is exact and commutes with arbitrary direct sums and products.
(ii) \mathfrak{g}-morphisms $\varphi: V_{1} \rightarrow V_{2}$ induce natural transformations $F_{V_{1}} \rightarrow F_{V_{2}}$.
(iii) We have $F_{V_{1}} \circ F_{V_{2}} \cong F_{V_{1} \otimes V_{2}}$ and a biadjunction $\left(F_{V^{*}}, F_{V}\right)$. (Here V^{*} is the dual of V, with respect to some anti-involution of \mathfrak{g} fixing points of \mathfrak{h}.)
(iv) Suppose V has weights μ_{1}, \ldots, μ_{n} (with multiplicty). Then $F_{V}\left(M_{\chi}\right)$ has a filtration with quotients $M_{\chi+\mu_{i}}, 1 \leq i \leq n$.

- To V we also associate the (U, U)-bimodule $\Phi_{V}=V \otimes U$, where the left and right actions are

$$
X(v \otimes u)=X v \otimes u+v \otimes X u, \quad(v \otimes u) X=v \otimes u X
$$

- Lemma 3.1:

(i) $h\left(\Phi_{V}\right) \cong F_{V}$.
(ii) $\operatorname{Hom}_{U^{2}}\left(\Phi_{V}, Y\right) \cong \operatorname{Hom}_{\mathfrak{g}}\left(V, Y^{\text {ad }}\right)$ for any (U, U)-bimodule Y.
(iii) Φ_{V} is U-generated on both sides by its subset $V=V \otimes 1$.

- Corollary 3.2: F_{V} preserves the subcategories \mathscr{M}_{f} and \mathcal{O} in \mathscr{M}, and also preserves projective objects in all three categories.

Proof. F_{V} is exact and $F_{V}(U)=\Phi_{V}$ is finitely generated by Lemma 3.1(iii), so $\left.F_{V}\left(\mathscr{M}_{f}\right) \subseteq \mathscr{M}_{f}\right)$. Moreover, if $M \in \mathcal{O}$, then $F_{V}(M)$ is \mathfrak{h}-diagonalisable and $U\left(\mathfrak{n}^{+}\right)$-finite because $V \in \mathcal{O}$, and we have already seen it is finitely generated. So $F_{V}(\mathcal{O}) \subseteq \mathcal{O}$.

The remaining statement follows from a general fact: functors with exact right adjoints always preserve projectives.

3.2 Another Kostant theorem

- Have a Z^{2}-action on the functor F_{V}, i.e. a ring map $Z^{2} \rightarrow \operatorname{End}\left(F_{V}\right)$:

$$
z \cdot(v \otimes m)=\sum a_{i}\left(v \otimes b_{i} m\right), \quad \text { for } z=\sum_{i} a_{i} \otimes b_{i} \in Z^{2}
$$

- This is the action obtained by transport of structure from the action of $Z^{2} \subseteq$ U^{2} on Φ_{V} to F_{V} via the equivalence h.
- Let I_{V} denote the kernel of the action:

$$
I_{V}=\left\{z \in Z^{2}: z(V \otimes M)=0 \text { for all } M \in \mathscr{M}\right\}
$$

- Note the embedding

$$
\eta^{*} \otimes \eta^{*}: Z^{2} \hookrightarrow S(\mathfrak{h}) \otimes S(\mathfrak{h})=S(\mathfrak{h} \oplus \mathfrak{h})=P\left(\mathfrak{h}^{*} \oplus \mathfrak{h}^{*}\right)
$$

since η^{*} identifies Z with $S(\mathfrak{h})^{W}$, the image of $\eta^{*} \otimes \eta^{*}$ consists of polynomials $Q(\psi, \chi)$ which are W-invariant in each variable.

- Theorem 3.3 (Kostant): Let Q be the image of some $z \in Z^{2}$. Then $z \in I_{V}$ if and only if $Q(\chi+\mu, \chi)$ is the zero polynomial for any weight $\mu \in P(V)$.

- Corollary 3.4:

(i) Z^{2} / I_{V} is finitely generated over Z.
(ii) $F_{V}\left(\mathscr{M}_{Z f}\right) \subseteq \mathscr{M}_{Z f}$.

Proof. Define $A=S(\mathfrak{h}), B=S(\mathfrak{h})^{W}$, and

$$
J=\left\{Q \in A^{2}: Q(\chi+\mu, \chi)=0 \text { for any } \mu \in P(V)\right\}
$$

Then J is an ideal in A^{2} and $J_{V}=J \cap B^{2}$ is an ideal in B^{2}. Claim (i) is equivalent to saying B^{2} / J_{V} is finitely generated over B.
By the theorem, there is a B-module embedding

$$
i=\oplus_{\mu} i_{\mu}: B^{2} / J_{V} \rightarrow \oplus_{\mu \in P(V)} A
$$

where $i_{\mu}(Q)(\chi)=Q(\chi+\mu, \chi)$. But A is finitely generated as a B-module because W is finite, so by Noetherianity of B we conclude B^{2} / J_{V} is finitely generated over B.

It remains to prove (ii). Exercise from (i): Given a \mathfrak{g}-module with $J M=0$ for some finite-codimension ideal $J \subseteq Z$, cook up a finite-codimension ideal $J^{\prime} \subseteq Z$ with $J^{\prime}(V \otimes M)=0$. Then since F_{V} commutes with direct limits, we get $F_{V}\left(\mathscr{M}_{Z f}\right) \subseteq \mathscr{M}_{Z f}$.

3.3 Functor decomposition and the main results

- We have seen that F_{V} preserves $\mathscr{M}_{Z f}$; let $F_{V, Z f}$ denote its restriction to this subcategory.
- Definition 3.5: Direct summands of $F_{V, Z f}$ are known as projective functors.
- Every projective functor decomposes into a direct sum of indecomposable projective functors; ultimately we will describe these indecomposables.
- Proposition 3.6: Let F, G be projective functors.
(i) F is exact and preserves direct sums and products.
(ii) Direct summands of F are projective; the functors $F \oplus G$ and $F \circ G$ are projective.
(iii) F has projective right and left adjoints.
(iv) $F=\oplus_{\theta, \theta^{\prime}} \operatorname{Pr}_{\theta^{\prime}} \circ F \circ \operatorname{Pr}_{\theta}$ and each of these summands are projective.
- To parametrise projective functors, we require the sets

$$
\Xi^{0}=\left\{(\psi, \chi) \in\left(\mathfrak{h}^{*}\right)^{2}: \psi-\chi \in \Lambda\right\}, \quad \Xi=\Xi^{0} / W
$$

where the quotient is by the component-wise W-action.

- Every element $\xi \in \Xi$ has a proper representative (ψ, χ), by which we mean that χ is dominant and $\psi \leq W_{\chi}(\psi)$. There is a well-defined map

$$
\eta^{r}: \Xi \rightarrow \Theta, \quad \eta^{r}(\psi, \chi)=\eta(\chi)
$$

- Theorem A:

(i) Each projective functor decomposes into a direct sum of indecomposable projective functors.
(ii) To each $\xi \in \Xi$ there corresponds an indecomposable projective functor F_{ξ}, unique up to isomorphism with the following properties:

- $F_{\xi}\left(M_{\varphi}\right)=0$ if $\eta^{r}(\xi) \neq \eta(\varphi), \varphi \in \mathfrak{h}^{*}$.
- If $\xi=(\psi, \chi)$ is written properly, then $F_{\xi}\left(M_{\chi}\right)=P_{\psi}$.
(iii) $\xi \mapsto F_{\xi}$ defines a bijection from Ξ to the set of isomorphism classes of indecomposable projective functors.

Among other things, the next result reveals the remarkable fact that projective functors are determined by their induced action on $K(\mathcal{O})$.

- Theorem B: Suppose F, G are projective functors. Then:
(i) If $[F]=[G]$, then F is naturally isomorphic to G.
(ii) If (F, G) is an adjoint pair, then $([F],[G])$ is a conjugate pair on the inner product space $K(\mathcal{O})$.
(iii) $[F]$ is W-equivariant.
- Theorems A and B allow us to compute $\left[F_{\xi}\right]$ explicitly. In particular, $\left[F_{\xi}\right]\left(\delta_{\varphi}\right)=$ 0 if $\varphi \notin W(\chi)$ and $\left[F_{\xi}\right]\left(\delta_{w(\chi)}\right)=\sum_{\varphi>\psi} d_{\varphi, \psi} \delta_{w \varphi}$, so understanding F reduces to knowledge of the $d_{\varphi \psi}$.
- Definition 3.7: Let $\theta \in \Theta$ and let $F(\theta)$ denote the restriction of a projective functor to $\mathscr{M}(\theta)$. A projective θ-functor $F: \mathscr{M}(\theta) \rightarrow \mathscr{M}$ is any direct summand of a functor $F_{V}(\theta)$.
- The third and final theorem in this section underpins the proofs of the previous two.
- Theorem C: Let F, G be projective θ-functors, $\chi \in \eta^{-1}(\theta)$. Then

$$
i_{\chi}: \operatorname{Hom}(F, G) \rightarrow \operatorname{Hom}\left(F M_{\chi}, G M_{\chi}\right), \quad i_{\chi}(\varphi)=\varphi_{M_{\chi}}
$$

is a monomorphism, and an isomorphism if χ is dominant.
Proof sketch. By considering decompositions $F_{V}(\theta)=F \oplus F^{\prime}, G_{L}(\theta)=G \oplus G^{\prime}$, we reduce to the case $F=F_{V}(\theta)$ and $G=G_{L}(\theta)$.

To prove injectivity of i_{χ}, need the following fact: If $\chi \in \eta^{-1}(\theta)$ is a weight and $u \in U_{\theta}$, then $u M_{\chi}=0$ implies $u=0$.

The isomorphism for χ dominant is proven by counting dimensions using Kostant's theorem 2.3.

- We need some subsidiary information before we can proceed to the proofs of the other two theorems. Namely, we will need to see that the restriction

$$
F^{\infty}(\theta): \mathscr{M}^{\infty}(\theta) \rightarrow \mathscr{M}
$$

of a projective F is determined by the restrictions $F^{n}(\theta): \mathscr{M}^{n}(\theta) \rightarrow \mathscr{M}$.

- Proposition 3.8: Suppose F, G are projective functors. Then any natural transformation

$$
\varphi: F(\theta) \rightarrow G(\theta)
$$

admits a lift $\widehat{\varphi}: F^{\infty}(\theta) \rightarrow G^{\infty}(\theta)$. If φ is an isomorphism, then so is $\widehat{\varphi}$; if $F=G$, then any idempotent φ can be lifted to an idempotent $\widehat{\varphi}$.

Proof. Let $H^{n}=\operatorname{Hom}\left(F^{n}(\theta), G^{n}(\theta)\right), 1 \leq n \leq \infty$, and let $r_{n m}: H^{n} \rightarrow H^{m}$ denote the obvious restriction maps, $m \leq n$, so we have an inverse system.
Firstly, we have that $H^{\infty}=\lim H^{n}$. This is because F commutes with direct limits and modules $M \in \mathscr{M}^{\infty} \overleftarrow{(\theta)}$ can be expressed as follows:

$$
M=\underline{\lim } M^{n}, \quad M^{n}=\left\{m \in M: J_{\theta}^{n} m=0\right\} \in \mathscr{M}^{n}(\theta) .
$$

As in the sketch of Theorem C, we may assume $F=F_{V}, G=F_{L}$. Then, exercise (use Watt's theorem and Lemma 3.1):

$$
H^{n}=\left(\operatorname{Hom}_{\mathfrak{g}}\left(L^{*} \otimes V, U^{\mathrm{ad}}\right)\right) / J_{\theta}^{n} .
$$

So H^{∞} is a J_{θ}-adic completion. Then $H^{n}=H^{\infty} / J_{\theta}^{n}$, so in particular $\varphi \in H^{1}$ can always be lifted to some $\widehat{\varphi} \in H^{\infty}$.

Suppose φ is an isomorphism, inverse ψ. To prove $\widehat{\varphi}$ is an isomorphism, it suffices to prove $\widehat{\varphi} \widehat{\psi}$ and $\widehat{\psi} \widehat{\varphi}$ are invertible, so for that reason we can assume $F=G$ and $\varphi=1$. But then $\widehat{\varphi}=1-\alpha$ for some $\alpha \in J_{\theta}$, which is a unit in H^{∞}. We omit the proof that an idempotent φ has an idempotent lift.

- Theorem C + Proposition $3.8=$ Corollary 3.9: Suppose F, G are projective functors, χ a dominant weight with $\theta=\eta(\chi)$. Any isomorphism $F M_{\chi} \cong G M_{\chi}$ lifts to an isomorphism $F^{\infty}(\theta) \cong G^{\infty}(\theta)$, and any \mathfrak{g}-module decomposition $F M_{\chi} \cong \oplus_{i} M_{i}$ lifts to a decomposition $F^{\infty}(\theta)=\oplus F_{i}$ with $F_{i} M_{\chi}=M_{i}$.
- If F is a projective functor, then F is the direct sum of its restrictions to the subcategories $\mathscr{M}^{\infty}(\theta)$; that is,

$$
F=\bigoplus_{\theta} F \circ \operatorname{Pr}(\theta)
$$

- Now, by the corollary, $F \circ \operatorname{Pr}(\theta)$ splits into a direct sum of (finitely many) indecomposable projective functors, according to the direct sum decomposition of $F M_{\chi}$. Thus we obtain Theorem A(i).
- Remark 3.10: If F is an indecomposable projective functor, then $F=$ $F \circ \operatorname{Pr}(\theta)$ for some $\theta \in \Theta$. Thus $F M_{\chi}=0$ whenever $\eta(\chi) \neq \theta$. On the other hand, if $\chi \in \eta^{-1}(\theta)$ is dominant, then $M_{\chi}=P_{\chi}$ is an indecomposable projective and hence $F M_{\chi}=P_{\psi}$ for some $\psi \in \mathfrak{h}^{*}$.
- Proof of Theorem B. For the first point, suppose $[F]=[G]$. By the previous discussion, it is equivalent to prove $F M_{\chi} \cong G M_{\chi}$ for any dominant weight χ. But $F M_{\chi}$ and $G M_{\chi}$ are projective objects in \mathcal{O}, whose isomorphism classes are recoverable from their images in $K(\mathcal{O})$.

For the second point, we need to prove $\{[F] x, y\}=\{x,[G] y\}$ for all $x, y \in K(\mathcal{O})$. We can assume $x=[P]$ is the class of a projective, since the classes of projective objects span $K(\mathcal{O})$. Then use the assumed adjunction and the formula

$$
\{[P],[M]\}=\operatorname{dim} \operatorname{Hom}(P, M), \quad P \text { projective, } M \text { arbitrary in } \mathcal{O}
$$

We omit the rather lengthy proof of $[F]$'s W-equivariance.

- All that remains is to prove the classification results of Theorem A(ii),(iii).

Proof. Given a projective functor F, we define a quantity

$$
a_{F}:\left(\mathfrak{h}^{*}\right)^{2} \rightarrow \mathbb{Z}, \quad a_{F}(\psi, \chi)=\left\{d_{\psi},[F] \delta_{\chi}\right\}
$$

In fact a_{F} lands in \mathbb{N}. Indeed, if χ is dominant, then $F M_{\chi}$ is projective and $a_{F}(\psi, \chi) \geq 0$ for any ψ (consider an appropriate Hom space); then use W equivariance of $[F]$ to deduce that $a_{F}(\psi, \chi) \geq 0$ always.

Next consider the subsets

$$
\begin{gathered}
S(F)=\left\{(\psi, \chi): a_{F}(\psi, \chi)>0\right\} \\
S^{\max }(F)=\{(\psi, \chi) \in S(F):|\psi-\chi| \text { maximal }\}
\end{gathered}
$$

By non-negativity of a_{F}, we get that

$$
F=\oplus_{i} F_{i} \quad \Rightarrow \quad S(F)=\cup_{i} S\left(F_{i}\right)
$$

so that, since $S\left(F_{V}\right) \subseteq \Xi^{0}$, the same is true for $S(F)$. (Similarly $S^{\max }(F) \subseteq$ $\cup_{i} S^{\max }\left(F_{i}\right)$.) Both $S(F)$ and $S^{\max }(F)$ are preserved by W, due to the W equivariance of $[F]$.

Suppose F is indecomposable. Then $S^{\max }(F) / W$ consists of a single point. Indeed, if $F=F \circ \operatorname{Pr}(\theta)$ and $\chi \in \eta^{-1}(\theta)$ is dominant, then $F M_{\chi}=P_{\psi}$ and we get $S^{\max }(F)=W(\psi, \chi)$ (exercise).
To each indecomposable projective functor F we have associated a $\xi \in \Xi$, such that if ξ is written properly, then $F M_{\chi}=P_{\psi}$. And each $\xi=(\psi, \chi)$ arises
thus: If V is a finite-dimensional \mathfrak{g}-module with extremal weight $\psi-\chi$, then $(\psi, \chi) \in S^{\max }\left(F_{V}\right)$ and therefore $(\psi, \chi) \in S^{\max }(F)$ for some indecomposable summand F of F_{V}.

4 Applications

4.1 Equivalences between categories $\mathscr{M}(\theta)$

- Theorem 4.1: For $\theta, \theta^{\prime} \in \Theta$, let $F_{\theta^{\prime}, V, \theta}=\operatorname{Pr}\left(\theta^{\prime}\right) \circ F \circ \operatorname{Pr}(\theta): \mathscr{M}^{\infty}(\theta) \rightarrow$ $\mathscr{M}^{\infty}\left(\theta^{\prime}\right)$. Suppose we have dominant weights $\chi \in \eta^{-1}(\theta), \psi \in \eta^{-1}\left(\theta^{\prime}\right)$ such that $W_{\chi}=W_{\psi}$ and $\lambda=\psi-\chi \in \Lambda$. Then

$$
F_{\theta^{\prime}, V, \theta}: \mathscr{M}^{\infty}(\theta) \rightarrow \mathscr{M}^{\infty}\left(\theta^{\prime}\right), \quad F_{\theta, V^{*}, \theta^{\prime}}: \mathscr{M}^{\infty}\left(\theta^{\prime}\right) \rightarrow \mathscr{M}^{\infty}(\theta),
$$

are inverse equivalences of categories, where V is a finite-dimensional \mathfrak{g}-module with extremal weight λ.

Proof. Let $F=F_{\theta^{\prime}, V, \theta}, G=F_{\theta, V^{*}, \theta^{\prime}}$. Remembering λ is an extremal weight of V (so that $-\lambda$ is such for V^{*}), one can show that (exercise)

$$
F M_{\chi}=M_{\psi}, \quad G M_{\psi}=M_{\chi}
$$

Hence $G F M_{\chi}=M_{\chi}$, so the theorem provides that $G F \cong \operatorname{Pr}(\theta)$; similarly $F G \cong \operatorname{Pr}\left(\theta^{\prime}\right)$. By restricting F, G to $\mathscr{M}(\theta), \mathscr{M}\left(\theta^{\prime}\right)$, we deduce that they are categorical equivalences.

- The following observations of Bernstein refine earlier results of Zuckerman:
(i) Let \mathscr{H} be any complete subcategory of \mathscr{M} preserved by all functors F_{V}, e.g. $\mathscr{H}=\mathcal{O}$. The same proof method shows that the intersections of \mathscr{H} with $\mathscr{M}^{\infty}(\theta)$ and $\mathscr{M}^{\infty}\left(\theta^{\prime}\right)$ are equivalent.
(ii) If we assume just an inequality of stabilisers $W_{\psi} \subseteq W_{\chi}$, then (in the notation of the proof) we conclude $G F \cong \mathrm{Id}^{\oplus\left|W_{\chi}: W_{\psi}\right|}$.

4.2 Lattices of two-sided ideals and submodules

- Notation: Suppose χ is a dominant weight with $\eta(\chi)=\theta$. Let Ω_{θ} be the lattice of two-sided ideals in U_{θ}; let Ω_{χ} be the submodule lattice of M_{χ}.
- Theorem 4.2: Let χ be a dominant weight, $\theta=\eta(\chi)$.
(i) The mapping

$$
\nu: \Omega_{\theta} \rightarrow \Omega_{\chi}, \quad \nu(J)=J M_{\chi}
$$

is an embedding, and a lattice isomorphism if χ is regular.
(ii) Let \mathscr{P} be the class of modules isomorphic to direct sums of P_{ψ} for $\psi<$ χ and $\psi \leq W_{\chi}(\psi)$. Then the image of ν consists of the \mathscr{P}-generated submodules of M_{χ}.

4.3 Duflo's theorem

The result in the previous section allows for an easy re-derivation of Duflo's famous theorem.

- Theorem 4.3 (Duflo): Let $J \in \Omega_{\theta}$ be a two-sided prime ideal. Then a weight $\psi \in \eta^{-1}(\theta)$ exists such that $J=\operatorname{Ann} L_{\psi}$.

Proof. Take $\chi \in \eta^{-1}(\theta)$ dominant. Let L_{1}, \ldots, L_{n} be the composition factors of the module $M=M_{\chi} / J M_{\chi}$, with annihilators $I_{i} \subseteq U_{\theta}$. Certainly $J \subseteq I_{i}$ for all i, and the product $I=I_{1} \cdots I_{n}$ annhilates M. It follows from section 4.2 that $I \subseteq J$. Invoking that J is prime gives $J=I_{i}$ for some i. But now from our knowledge of M_{χ}, we have that $L_{i}=L_{\psi}$ for some $\psi<\chi$, and the result follows.

