WiSe exercises

Joshua Ciappara

29/08/20

Exercise 1

Let $n \in \mathbb{Z}_{\geq 0}$ have digits c_{0}, \ldots, c_{d} in base p. Check directly that

$$
\left(c_{0}+1\right)\left(c_{1}+1\right) \cdots\left(c_{d}+1\right) \leq n+1
$$

and determine when equality holds. Explain this inequality as a shadow of a theorem in the modular representation theory of SL_{2}, and use it to state precisely for which values of n the module ∇_{n} is simple.

Exercise 2

Let k be a field and $V \neq 0$ a finite-dimensional k-vector space. Work out why the natural map

$$
\operatorname{Sym}^{n}\left(V^{*}\right) \rightarrow\left(\operatorname{Sym}^{n}(V)\right)^{*}
$$

is an isomorphism if and only if $n!\neq 0$ in k.

Exercise 3

Throughout this exercise, k is an algebraically closed field; in this exercise and later ones, all representations are assumed to be finite dimensional.
(a) Let G be a reduced algebraic k-group. Discuss the natural Hopf algebra structure on the regular functions $k[G]$ and the equivalence of abelian tensor categories,

$$
\{\text { representations of } G\} \cong\{\text { left } G \text {-modules }\} \cong\{\text { right } k[G] \text {-comodules }\}
$$

(b) Using these equivalences, show that for a torus T we can identify

$$
\operatorname{Rep}(T) \cong\{X(T) \text {-graded } k \text {-vector spaces }\}
$$

(c) Show that in characteristic zero, we can identify

$$
\operatorname{Rep}\left(\mathbb{G}_{a}\right) \cong\left\{(V, \phi): V \text { a } k \text {-vector space, } \phi \in \operatorname{End}_{k}(V) \text { nilpotent }\right\}
$$

while in characteristic p, the right-hand side must instead be

$$
\left\{\left(V, \phi_{n}\right)_{n \geq 1}: V \text { a } k \text {-vector space, } \phi_{i} \in \operatorname{End}_{k}(V) \text { all commuting, } \phi_{i}^{p}=0\right\}
$$

Exercise 4

Let k be a field and G a reductive algebraic group over k with maximal torus T, Weyl group $W=N_{G}(T) / T$, and $X=X(T)$.
(a) Check that the character of a G-module is invariant under the W-action on $\mathbb{Z}[X]$ induced by the W-action on X, i.e. $w \cdot e^{\lambda}=e^{w(\lambda)}$ for $w \in W$.
(b) Hence argue that if M is a G-module with $\operatorname{dim} M_{\lambda}=1$ and all weights W-conjugate to $\lambda \in X_{+}$, then $M \cong L(\lambda)$ is simple.
(c) Let $G=\mathrm{GL}_{n}$ have natural representation V of dimension n. Prove by considering weights that $\bigwedge^{m} V$ is simple for $1 \leq m \leq n$.

Exercise 5

(a) Let $v_{p}(n)$ be the p-adic valuation of $n \in \mathbb{Z}_{\geq 1}$. Prove Legendre's formula:

$$
v_{p}(n!)=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots
$$

(b) By writing n in base p, rephrase Legendre's formula as

$$
v_{p}(n!)=\frac{n-s_{p}(n)}{p-1}, \quad \text { where } \quad s_{p}(n)=\text { sum of } p \text {-adic digits of } n .
$$

(c) For $m \in \mathbb{Z}_{\geq 1}$, write

$$
\begin{aligned}
m+n & =a_{d} p^{d}+a_{d-1} p^{d-1}+\cdots+a_{0}, \\
m & =b_{d} p^{d}+b_{d-1} p^{d-1}+\cdots+b_{0}, \\
n & =c_{d} p^{d}+c_{d-1} p^{d-1}+\cdots+c_{0} ;
\end{aligned}
$$

there may be some leading zeroes. For $0 \leq i \leq d$, the indicator $\gamma_{i} \in\{0,1\}$ of the i-th carry when adding m to n is defined inductively as follows:

$$
\gamma_{0}=\left\{\begin{array}{ll}
0 & \text { if } b_{0}+c_{0}<p \\
1 & \text { otherwise },
\end{array} \quad \gamma_{i}= \begin{cases}0 & \text { if } b_{i}+c_{i}+\gamma_{i-1}<p \\
1 & \text { otherwise } .\end{cases}\right.
$$

Using (b) and the expression $\binom{m+n}{n}=\frac{(m+n)!}{m!n!}$, prove Kummer's theorem:

$$
v_{p}\binom{m+n}{n}=\sum_{i=0}^{d-1} \gamma_{i} .
$$

(d) Deduce that if $n+1$ has only one non-zero digit in base p, then p does not divide $\binom{n}{j}$ for all $0 \leq j \leq n$. What does this have to do with Exercise 1?

References and accreditation

- Exercise 2 is inspired by these notes of Brian Conrad.
- I learned Exercise 3 from Geordie Williamson.
- Exercise 4 is constructed from Section II.2.15 of Jens Carsten Jantzen's Representations of Algebraic Groups.
- The approach for Parts (a)-(c) of Exercise 5 is due to Karen Ge.

