WiSe exercises

Joshua Ciappara

29/08/20

Exercise 1

Let $n \in \mathbb{Z}_{>0}$ have digits c_0, \ldots, c_d in base p. Check directly that

 $(c_0+1)(c_1+1)\cdots(c_d+1) \le n+1,$

and determine when equality holds. Explain this inequality as a shadow of a theorem in the modular representation theory of SL_2 , and use it to state precisely for which values of n the module ∇_n is simple.

Exercise 2

Let k be a field and $V \neq 0$ a finite-dimensional k-vector space. Work out why the natural map

 $\operatorname{Sym}^n(V^*) \to (\operatorname{Sym}^n(V))^*$

is an isomorphism if and only if $n! \neq 0$ in k.

Exercise 3

Throughout this exercise, k is an algebraically closed field; in this exercise and later ones, all representations are assumed to be finite dimensional.

(a) Let G be a reduced algebraic k-group. Discuss the natural Hopf algebra structure on the regular functions k[G] and the equivalence of abelian tensor categories,

{representations of G} \cong {left *G*-modules} \cong {right k[G]-comodules}.

(b) Using these equivalences, show that for a torus T we can identify

 $\operatorname{Rep}(T) \cong \{X(T) \text{-graded } k \text{-vector spaces}\}.$

(c) Show that in characteristic zero, we can identify

 $\operatorname{Rep}(\mathbb{G}_a) \cong \{(V, \phi) : V \text{ a } k \text{-vector space, } \phi \in \operatorname{End}_k(V) \text{ nilpotent}\},\$

while in characteristic p, the right-hand side must instead be

 $\{(V, \phi_n)_{n \ge 1} : V \text{ a } k \text{-vector space}, \phi_i \in \text{End}_k(V) \text{ all commuting}, \phi_i^p = 0\}.$

Exercise 4

Let k be a field and G a reductive algebraic group over k with maximal torus T, Weyl group $W = N_G(T)/T$, and X = X(T).

- (a) Check that the character of a *G*-module is invariant under the *W*-action on $\mathbb{Z}[X]$ induced by the *W*-action on *X*, i.e. $w \cdot e^{\lambda} = e^{w(\lambda)}$ for $w \in W$.
- (b) Hence argue that if M is a G-module with dim $M_{\lambda} = 1$ and all weights W-conjugate to $\lambda \in X_+$, then $M \cong L(\lambda)$ is simple.
- (c) Let $G = \operatorname{GL}_n$ have natural representation V of dimension n. Prove by considering weights that $\bigwedge^m V$ is simple for $1 \le m \le n$.

Exercise 5

(a) Let $v_p(n)$ be the *p*-adic valuation of $n \in \mathbb{Z}_{\geq 1}$. Prove Legendre's formula:

$$v_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots$$

(b) By writing n in base p, rephrase Legendre's formula as

$$v_p(n!) = \frac{n - s_p(n)}{p - 1}$$
, where $s_p(n) = \text{sum of } p\text{-adic digits of } n$.

(c) For $m \in \mathbb{Z}_{\geq 1}$, write

$$m + n = a_d p^d + a_{d-1} p^{d-1} + \dots + a_0,$$

$$m = b_d p^d + b_{d-1} p^{d-1} + \dots + b_0,$$

$$n = c_d p^d + c_{d-1} p^{d-1} + \dots + c_0;$$

there may be some leading zeroes. For $0 \le i \le d$, the indicator $\gamma_i \in \{0, 1\}$ of the *i*-th carry when adding *m* to *n* is defined inductively as follows:

$$\gamma_0 = \begin{cases} 0 & \text{if } b_0 + c_0$$

Using (b) and the expression $\binom{m+n}{n} = \frac{(m+n)!}{m!n!}$, prove Kummer's theorem:

$$v_p\binom{m+n}{n} = \sum_{i=0}^{d-1} \gamma_i.$$

(d) Deduce that if n+1 has only one non-zero digit in base p, then p does not divide $\binom{n}{j}$ for all $0 \le j \le n$. What does this have to do with Exercise 1?

References and accreditation

- Exercise 2 is inspired by these notes of Brian Conrad.
- I learned Exercise 3 from Geordie Williamson.
- Exercise 4 is constructed from Section II.2.15 of Jens Carsten Jantzen's *Representations of Algebraic Groups*.
- The approach for Parts (a)–(c) of Exercise 5 is due to Karen Ge.