An explicit symplectic integrator for the zero angular momentum 3-body problem in regularised coordinates

Danya Rose, joint work with Holger Dullin

PG Seminar
11/8/11

The 3-body problem

- Problem of three bodies moving under mutual gravity: Hamiltonian is

$$
H=\frac{1}{2} \sum \frac{\left|P_{j}\right|^{2}}{m_{j}}-\sum \frac{m_{k} m_{l}}{a_{j}}, \text { where } a_{j}=\left|X_{l}-X_{k}\right|
$$

(summation is over cyclic permutations of $(1,2,3)$, denoted by $(j, k, l))$.

- Explicit solution in closed form cannot be written, but a lot is open to enquiry.
- e.g. numerical integration and [Waldvogel, 1982] regularisation of binary collisions.
- Families of collision orbits bound regions of certain dynamics.
- Relative periodic orbits in Cartesian coordinates are exactly periodic in these regularised ones.

The 3-body problem

- Problem of three bodies moving under mutual gravity: Hamiltonian is

$$
H=\frac{1}{2} \sum \frac{\left|P_{j}\right|^{2}}{m_{j}}-\sum \frac{m_{k} m_{l}}{a_{j}}, \text { where } a_{j}=\left|X_{l}-X_{k}\right|
$$

(summation is over cyclic permutations of $(1,2,3)$, denoted by $(j, k, l))$.

- Explicit solution in closed form cannot be written, but a lot is open to enquiry.
- e.g. numerical integration and [Waldvogel, 1982] regularisation of binary collisions.
- Families of collision orbits bound regions of certain dynamics.
- Relative periodic orbits in Cartesian coordinates are exactly periodic in these regularised ones.

The 3-body problem

- Problem of three bodies moving under mutual gravity: Hamiltonian is

$$
H=\frac{1}{2} \sum \frac{\left|P_{j}\right|^{2}}{m_{j}}-\sum \frac{m_{k} m_{l}}{a_{j}}, \text { where } a_{j}=\left|X_{l}-X_{k}\right|
$$

(summation is over cyclic permutations of $(1,2,3)$, denoted by (j, k, l)).

- Explicit solution in closed form cannot be written, but a lot is open to enquiry.
- e.g. numerical integration and [Waldvogel, 1982] regularisation of binary collisions.
Families of collision orbits bound regions of certain
dynamics.
Relative periodic orbits in Cartesian coordinates are
exactly periodic in these regularised ones.

The 3-body problem

- Problem of three bodies moving under mutual gravity: Hamiltonian is

$$
H=\frac{1}{2} \sum \frac{\left|P_{j}\right|^{2}}{m_{j}}-\sum \frac{m_{k} m_{l}}{a_{j}}, \text { where } a_{j}=\left|X_{l}-X_{k}\right|
$$

(summation is over cyclic permutations of $(1,2,3)$, denoted by $(j, k, l))$.

- Explicit solution in closed form cannot be written, but a lot is open to enquiry.
- e.g. numerical integration and [Waldvogel, 1982] regularisation of binary collisions.
- Families of collision orbits bound regions of certain dynamics.
> - Relative periodic orbits in Cartesian coordinates are exactly periodic in these regularised ones.

The 3-body problem

- Problem of three bodies moving under mutual gravity: Hamiltonian is

$$
H=\frac{1}{2} \sum \frac{\left|P_{j}\right|^{2}}{m_{j}}-\sum \frac{m_{k} m_{l}}{a_{j}}, \text { where } a_{j}=\left|X_{l}-X_{k}\right|
$$

(summation is over cyclic permutations of $(1,2,3)$, denoted by (j, k, l)).

- Explicit solution in closed form cannot be written, but a lot is open to enquiry.
- e.g. numerical integration and [Waldvogel, 1982] regularisation of binary collisions.
- Families of collision orbits bound regions of certain dynamics.
- Relative periodic orbits in Cartesian coordinates are exactly periodic in these regularised ones.

Example 3-body configuration in complex Cartesian coordinates, showing positions and physical momenta. Centre of mass at origin, $\sum_{j=1}^{3} P_{j}=0, \operatorname{Im} \sum_{j=1}^{3} \bar{X}_{j} P_{j}=0$.

Symmetry-reduced coordinates

Coordinate transformation from (complex) Cartesian to symmetry-reduced coordinates by translations and rotations

$$
\begin{array}{ll}
\left\{X_{j}\right\} \rightarrow\left\{a_{j}, \phi\right\} & \begin{array}{l}
a_{j}=\left|X_{l}-X_{k}\right| \\
\phi=\frac{1}{3}\left(\phi_{1}+\phi_{2}+\phi_{3}\right)
\end{array} \\
\left\{P_{j}\right\} \rightarrow\left\{p_{j}, p_{\phi}\right\} \quad \begin{array}{l}
p_{j}=\left|P_{l}\right| \sin \left(\phi_{j}-\psi_{l}\right) \\
\sin \left(\theta_{j}\right) \\
p_{\phi}=\operatorname{Im} \sum_{j=1}^{3} \bar{X}_{j} P_{j}=\text { const }
\end{array} \\
\phi_{j}=\arg \left(X_{l}-X_{k}\right), \psi_{j}=\arg \left(P_{j}\right), \theta_{j}=\phi_{l}-\phi_{k} \bmod 2 \pi
\end{array}
$$

Graphic of the angles $\phi_{2}, \phi_{3}, \psi_{1}$ and θ_{1}.

Example 3-body configuration showing geometric interpretation of reduced coordinates a_{j} and conjugate momenta p_{j} as projections.

Regularised coordinates

Another transformation: from symmetry-reduced to regularised

$$
\begin{array}{lll}
\left\{a_{j}, \phi\right\} & \rightarrow\left\{\alpha_{j}, \phi\right\} & a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2} \\
\left\{p_{j}, p_{\phi}\right\} & \rightarrow\left\{\pi_{j}, p_{\phi}\right\} & \pi_{j}=2 \alpha_{j}\left(p_{k}+p_{l}\right)
\end{array}
$$

In $\left(\alpha_{j}, \alpha_{k}, \alpha_{l}\right)$-space, each possible triangle is represented four times: if $a, b, c \in \mathbb{R}$ s.t. $a, b, c \geq 0$ and $a, b, c \neq 0$ simultaneously, then

$$
(a, b, c) \equiv(a,-b,-c) \equiv(-a, b,-c) \equiv(-a,-b, c)
$$

are positively oriented (ordered counterclockwise) and

$$
\begin{aligned}
(-a,-b,-c) & \equiv(-a, b, c) \equiv(a,-b, c) \equiv(a, b,-c) \\
& \text { are negatively oriented (ordered clockwise) }
\end{aligned}
$$

in the space of all triangles.

Example 3-body configuration showing geometric interpretation of regularised coordinates α_{j}. (Conjugate momenta π_{j} not shown.)

Rescale time by $\mathrm{d} t=a_{1} a_{2} a_{3} \mathrm{~d} \tau$ and employ Poincaré's trick, considering only surfaces of constant energy h. Now $K=(H-h) \frac{\mathrm{d} t}{\mathrm{~d} \tau} \equiv 0$ for physically meaningful orbits.
When $p_{\phi}=0$, Hamiltonian becomes polynomial:

$$
K=\frac{1}{8} \sum \frac{a_{j}}{m_{j}}\left[\alpha^{2} \pi_{j}^{2}+\left(\alpha_{k} \pi_{l}-\alpha_{l} \pi_{k}\right)^{2}\right]-\sum m_{k} m_{l} a_{k} a_{l}-h a_{j} a_{k} a_{l}
$$

where $\alpha^{2}:=\alpha_{j}^{2}+\alpha_{k}^{2}+\alpha_{l}^{2}$ and $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$.
Looks bad, but all binary collisions are regularised simultaneously.

Some theory: symplectic integration

- We want to look for periodic orbits of the 3BP in these coordinates.
- This involves long time integration that must maintain qualitative accuracy.
- Standard explicit integrators (e.g. Runge-Kutta) won't do. Geometric integration, i.e. symplectic as this is Hamiltonian, must be the way.
- We want an explicit integrator, for the sake of efficiency.
- Channell \& Neri gave such an integrator [Channell \& Neri, 1996].

Some theory: symplectic integration

- We want to look for periodic orbits of the 3BP in these coordinates.
- This involves long time integration that must maintain qualitative accuracy.
- Standard explicit integrators (e.g. Runge-Kutta) won't do. Geometric integration, i.e. symplectic as this is Hamiltonian, must be the way.
- We want an explicit integrator, for the sake of efficiency.
- Channell \& Neri gave such an integrator [Channell \& Neri, 1996].

Some theory: symplectic integration

- We want to look for periodic orbits of the 3BP in these coordinates.
- This involves long time integration that must maintain qualitative accuracy.
- Standard explicit integrators (e.g. Runge-Kutta) won't do. Geometric integration, i.e. symplectic as this is Hamiltonian, must be the way.
- We want an explicit integrator, for the sake of efficiency.
- Channell \& Neri gave such an integrator [Channell \& Neri, 1996].

Some theory: symplectic integration

- We want to look for periodic orbits of the 3BP in these coordinates.
- This involves long time integration that must maintain qualitative accuracy.
- Standard explicit integrators (e.g. Runge-Kutta) won't do. Geometric integration, i.e. symplectic as this is Hamiltonian, must be the way.
- We want an explicit integrator, for the sake of efficiency.
- Channell \& Neri gave such an integrator [Channell \& Neri, 1996].

Some theory: symplectic integration

- We want to look for periodic orbits of the 3BP in these coordinates.
- This involves long time integration that must maintain qualitative accuracy.
- Standard explicit integrators (e.g. Runge-Kutta) won't do. Geometric integration, i.e. symplectic as this is Hamiltonian, must be the way.
- We want an explicit integrator, for the sake of efficiency.
- Channell \& Neri gave such an integrator [Channell \& Neri, 1996].

A monomial Hamiltonian of form

$$
H\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)=A \prod_{j=1}^{n} q_{j}^{m_{j}} p_{j}^{n_{j}}
$$

is integrable for $n_{j}, m_{j} \in \mathbb{N}$, with integrals $I_{j}=q_{j}^{m_{j}} p_{j}^{n_{j}}$ and solutions, when $m_{j} \neq n_{j}$,

$$
\begin{aligned}
& q_{j}(t)=q_{j, 0}\left(1+\left(n_{j}-m_{j}\right) A \prod_{k \neq j} I_{k} q_{j, 0}^{m_{j}-1} p_{j, 0}^{n_{j}-1} t\right)^{\frac{n_{j}}{n_{j} m_{j}}} \\
& p_{j}(t)=p_{j, 0}\left(1+\left(n_{j}-m_{j}\right) A \prod_{k \neq j} I_{k} q_{j, 0}^{m_{j}-1} p_{j, 0}^{n_{j}-1} t\right)^{\frac{m_{j}}{m_{j}-n_{j}}}
\end{aligned}
$$

and, when $m_{j}=n_{j}$,

$$
\begin{aligned}
& q_{j}(t)=q_{j, 0} \exp \left(m_{j} A \prod_{k \neq j} I_{k} q_{j, 0}^{m_{j}-1} p_{j, 0}^{m_{j}-1} t\right) \\
& q_{j}(t)=q_{j, 0} \exp \left(-m_{j} A \prod_{k \neq j} I_{k} q_{j, 0}^{m_{j}-1} p_{j, 0}^{m_{j}-1} t\right) .
\end{aligned}
$$

Taking stock

- Let $z \equiv(q, p)$. Given Hamiltonian $H(q, p)=H_{1}(q)+H_{2}(p)$, solution can be written

$$
z=\Phi(t) z_{0}=e^{t\left\{\cdot, H_{1}(q)\right\}+t\left\{\cdot, H_{2}(p)\right\}} z_{0}
$$

- This is approximated to first order in t by the map

$$
\begin{equation*}
z=\psi(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{1}(q)\right\}} e^{t\left\{\cdot, H_{2}(p)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right) \tag{1}
\end{equation*}
$$

- This is just symplectic Euler.
- The adjoint $\left(\psi^{*}(t)\right.$ s.t. if $z_{1}=\psi(t) z_{0}$, then $\left.z_{0}=\psi^{*}(-t) z_{1}\right)$ is $z=\psi^{*}(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{2}(p)\right\}} e^{t\left\{\cdot, H_{1}(q)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right)$
- Compose 1 and 2 with "half-steps" to get the familiar symplectic leapfrog:

Taking stock

- Let $z \equiv(q, p)$. Given Hamiltonian $H(q, p)=H_{1}(q)+H_{2}(p)$, solution can be written

$$
z=\Phi(t) z_{0}=e^{t\left\{\cdot, H_{1}(q)\right\}+t\left\{\cdot, H_{2}(p)\right\}} z_{0}
$$

- This is approximated to first order in t by the map

$$
\begin{equation*}
z=\psi(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{1}(q)\right\}} e^{t\left\{\cdot, H_{2}(p)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right) \tag{1}
\end{equation*}
$$

- This is just symplectic Euler.
- The adjoint $\left(\psi^{*}(t)\right.$ s.t. if $z_{1}=\psi(t) z_{0}$, then $\left.z_{0}=\psi^{*}(-t) z_{1}\right)$ is

- Compose 1 and 2 with "half-steps" to get the familiar symplectic leapfrog:

Taking stock

- Let $z \equiv(q, p)$. Given Hamiltonian $H(q, p)=H_{1}(q)+H_{2}(p)$, solution can be written

$$
z=\Phi(t) z_{0}=e^{t\left\{\cdot, H_{1}(q)\right\}+t\left\{\cdot, H_{2}(p)\right\}} z_{0}
$$

- This is approximated to first order in t by the map

$$
\begin{equation*}
z=\psi(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{1}(q)\right\}} e^{t\left\{\cdot, H_{2}(p)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right) \tag{1}
\end{equation*}
$$

- This is just symplectic Euler.
- The adjoint $\left(\psi^{*}(t)\right.$ s.t. if $z_{1}=\psi(t) z_{0}$, then $\left.z_{0}=\psi^{*}(-t) z_{1}\right)$ is $z=\psi^{*}(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{2}(p)\right\}} e^{t\left\{\cdot, H_{1}(q)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right)$
- Compose 1 and 2 with "half-steps" to get the familiar symplectic leapfrog:

Taking stock

- Let $z \equiv(q, p)$. Given Hamiltonian $H(q, p)=H_{1}(q)+H_{2}(p)$, solution can be written

$$
z=\Phi(t) z_{0}=e^{t\left\{\cdot, H_{1}(q)\right\}+t\left\{\cdot, H_{2}(p)\right\}} z_{0}
$$

- This is approximated to first order in t by the map

$$
\begin{equation*}
z=\psi(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{1}(q)\right\}} e^{t\left\{\cdot, H_{2}(p)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right) \tag{1}
\end{equation*}
$$

- This is just symplectic Euler.
- The adjoint $\left(\psi^{*}(t)\right.$ s.t. if $z_{1}=\psi(t) z_{0}$, then $\left.z_{0}=\psi^{*}(-t) z_{1}\right)$ is

$$
\begin{equation*}
z=\psi^{*}(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{2}(p)\right\}} e^{t\left\{\cdot, H_{1}(q)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right) \tag{2}
\end{equation*}
$$

- Compose 1 and 2 with "half-steps" to get the familiar symplectic leapfrog:

Taking stock

- Let $z \equiv(q, p)$. Given Hamiltonian $H(q, p)=H_{1}(q)+H_{2}(p)$, solution can be written

$$
z=\Phi(t) z_{0}=e^{t\left\{\cdot, H_{1}(q)\right\}+t\left\{\cdot, H_{2}(p)\right\}} z_{0}
$$

- This is approximated to first order in t by the map

$$
\begin{equation*}
z=\psi(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{1}(q)\right\}} e^{t\left\{\cdot, H_{2}(p)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right) \tag{1}
\end{equation*}
$$

- This is just symplectic Euler.
- The adjoint $\left(\psi^{*}(t)\right.$ s.t. if $z_{1}=\psi(t) z_{0}$, then $\left.z_{0}=\psi^{*}(-t) z_{1}\right)$ is

$$
\begin{equation*}
z=\psi^{*}(t) z_{0}+\mathcal{O}\left(t^{2}\right)=e^{t\left\{\cdot, H_{2}(p)\right\}} e^{t\left\{\cdot, H_{1}(q)\right\}} z_{0}+\mathcal{O}\left(t^{2}\right) \tag{2}
\end{equation*}
$$

- Compose 1 and 2 with "half-steps" to get the familiar symplectic leapfrog:

$$
\begin{equation*}
z=\phi(t) z_{0}+\mathcal{O}\left(t^{3}\right)=e^{\frac{t}{2}\left\{\cdot, H_{2}(p)\right\}} e^{t\left\{\cdot, H_{1}(q)\right\}} e^{\frac{t}{2}\left\{\cdot, H_{2}(p)\right\}} z_{0}+\mathcal{O}\left(t^{3}\right) \tag{3}
\end{equation*}
$$

Extending

- This result doesn't depend on the forms of H_{1} and H_{2} or even that the system is Hamiltonian.
- So it's trivial to extend the result to a Hamiltonian $H=H_{1}+\cdots+H_{N}$, where each H_{i} in the sum can be solved explicitly.
- The generalised midpoint rule is thus

Extending

- This result doesn't depend on the forms of H_{1} and H_{2} or even that the system is Hamiltonian.
- So it's trivial to extend the result to a Hamiltonian $H=H_{1}+\cdots+H_{N}$, where each H_{i} in the sum can be solved explicitly.
- The generalised midpoint rule is thus

Extending

- This result doesn't depend on the forms of H_{1} and H_{2} or even that the system is Hamiltonian.
- So it's trivial to extend the result to a Hamiltonian $H=H_{1}+\cdots+H_{N}$, where each H_{i} in the sum can be solved explicitly.
- The generalised midpoint rule is thus

$$
\begin{aligned}
& e^{t\left\{\cdot, H_{1}\right\}+\cdots+t\left\{\cdot, H_{N}\right\}}= \\
& e^{\frac{t}{2}\left\{\cdot, H_{N}\right\}} \ldots e^{\frac{t}{2}\left\{\cdot, H_{2}\right\}} e^{t\left\{\cdot, H_{1}\right\}} e^{\frac{t}{2}\left\{\cdot, H_{2}\right\}} \ldots e^{\frac{t}{2}\left\{\cdot, H_{N}\right\}}+\mathcal{O}\left(t^{3}\right)
\end{aligned}
$$

Going further

- Define $z_{0}=\frac{1}{2-2^{1 /(2 n-1)}}$ and $z_{1}=-\frac{2^{1 /(2 n-1)}}{2-2^{1 /(2 n-1)}}$ for some $n \in \mathbb{Z}^{+}$.
- Given a map $\phi(t)=e^{t\{; H\}}+\mathcal{O}\left(t^{2 n+1}\right)$
- and $\phi(t) \phi(-t)=I d$ (i.e. a reversible map),
- $\phi\left(z_{0} t\right) \phi\left(z_{1} t\right) \phi\left(z_{0} t\right)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+3}\right)$.
- This is Yoshida's trick for arbitrary even order. [Yoshida, 1990]

Going further

- Define $z_{0}=\frac{1}{2-2^{1 /(2 n-1)}}$ and $z_{1}=-\frac{2^{1 /(2 n-1)}}{2-2^{1 /(2 n-1)}}$ for some $n \in \mathbb{Z}^{+}$.
- Given a map $\phi(t)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+1}\right)$
- and $\phi(t) \phi(-t)=I d$ (i.e. a reversible map),
- $\phi\left(z_{0} t\right) \phi\left(z_{1} t\right) \phi\left(z_{0} t\right)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+3}\right)$.
- This is Yoshida's trick for arbitrary even order. [Yoshida, 1990]

Going further

- Define $z_{0}=\frac{1}{2-2^{1 /(2 n-1)}}$ and $z_{1}=-\frac{2^{1 /(2 n-1)}}{2-2^{1 /(2 n-1)}}$ for some $n \in \mathbb{Z}^{+}$.
- Given a map $\phi(t)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+1}\right)$
- and $\phi(t) \phi(-t)=I d$ (i.e. a reversible map),
- This is Yoshida's trick for arbitrary even order. [Yoshida, 1990]

Going further

- Define $z_{0}=\frac{1}{2-2^{1 /(2 n-1)}}$ and $z_{1}=-\frac{2^{1 /(2 n-1)}}{2-2^{1 /(2 n-1)}}$ for some $n \in \mathbb{Z}^{+}$.
- Given a map $\phi(t)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+1}\right)$
- and $\phi(t) \phi(-t)=I d$ (i.e. a reversible map),
- $\phi\left(z_{0} t\right) \phi\left(z_{1} t\right) \phi\left(z_{0} t\right)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+3}\right)$.
- This is Yoshida's trick for arbitrary even order. [Yoshida, 1990]

Going further

- Define $z_{0}=\frac{1}{2-2^{1 /(2 n-1)}}$ and $z_{1}=-\frac{2^{1 /(2 n-1)}}{2-2^{1 /(2 n-1)}}$ for some $n \in \mathbb{Z}^{+}$.
- Given a map $\phi(t)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+1}\right)$
- and $\phi(t) \phi(-t)=I d$ (i.e. a reversible map),
- $\phi\left(z_{0} t\right) \phi\left(z_{1} t\right) \phi\left(z_{0} t\right)=e^{t\{\cdot, H\}}+\mathcal{O}\left(t^{2 n+3}\right)$.
- This is Yoshida's trick for arbitrary even order. [Yoshida, 1990]

We have...

- A Hamiltonian of form $H=H_{1}+\cdots+H_{N}$,
- each H_{i} is monomial,
- a way of building a first order map for the flow of H by composing the flows of each H_{i},
- an adjoint map obtained by reversing the order of composition,
- composition of the first order map with its adjoint gives a reversible second order map.
- We can build a map of arbitrary even order. I.e. the integrator we need.
- A Hamiltonian of form $H=H_{1}+\cdots+H_{N}$,
- each H_{i} is monomial,
- a way of building a first order map for the flow of H by composing the flows of each H_{i},
- an adjoint map obtained by reversing the order of composition,
- composition of the first order map with its adjoint gives a reversible second order map.
- We can build a map of arbitrary even order. I.e. the integrator we need.

We have...

- A Hamiltonian of form $H=H_{1}+\cdots+H_{N}$,
- each H_{i} is monomial,
- a way of building a first order map for the flow of H by composing the flows of each H_{i},
- an adjoint map obtained by reversing the order of composition,
- composition of the first order map with its adjoint gives a reversible second order map.
- We can build a map of arbitrary even order. I.e. the integrator we need.

We have...

- A Hamiltonian of form $H=H_{1}+\cdots+H_{N}$,
- each H_{i} is monomial,
- a way of building a first order map for the flow of H by composing the flows of each H_{i},
- an adjoint map obtained by reversing the order of composition,
- composition of the first order map with its adjoint gives a reversible second order map.
- We can build a map of arbitrary even order. I.e. the integrator we need.

We have...

- A Hamiltonian of form $H=H_{1}+\cdots+H_{N}$,
- each H_{i} is monomial,
- a way of building a first order map for the flow of H by composing the flows of each H_{i},
- an adjoint map obtained by reversing the order of composition,
- composition of the first order map with its adjoint gives a reversible second order map.
- We can build a map of arbitrary even order. I.e. the integrator we need.

We have...

- A Hamiltonian of form $H=H_{1}+\cdots+H_{N}$,
- each H_{i} is monomial,
- a way of building a first order map for the flow of H by composing the flows of each H_{i},
- an adjoint map obtained by reversing the order of composition,
- composition of the first order map with its adjoint gives a reversible second order map.
- We can build a map of arbitrary even order. I.e. the integrator we need.

Applications

- Newton's method on a Poincaré section to look for periodic orbits.
- Well suited to picking events such as collinearities $\left(\alpha_{j}=0\right.$, $\alpha_{k}, \alpha_{l} \neq 0$), binary collisions ($\alpha_{j}=\alpha_{k}=0, \alpha_{l} \neq 0$).
- Label such events to build symbol sequences to identify islands of ICs containing periodic orbits (expensively). [Tanikawa, 2000]

Applications

- Newton's method on a Poincaré section to look for periodic orbits.
- Well suited to picking events such as collinearities $\left(\alpha_{j}=0\right.$, $\alpha_{k}, \alpha_{l} \neq 0$), binary collisions ($\alpha_{j}=\alpha_{k}=0, \alpha_{l} \neq 0$).
- Label such events to build symbol sequences to identify islands of ICs containing periodic orbits (expensively). [Tanikawa, 2000]

Applications

- Newton's method on a Poincaré section to look for periodic orbits.
- Well suited to picking events such as collinearities ($\alpha_{j}=0$, $\alpha_{k}, \alpha_{l} \neq 0$), binary collisions ($\alpha_{j}=\alpha_{k}=0, \alpha_{l} \neq 0$).
- Label such events to build symbol sequences to identify islands of ICs containing periodic orbits (expensively). [Tanikawa, 2000]

Example 1

Figure-8 choreography obtained by integrating in regularised coordinates.

Example 2

Periodic orbit obtained by continuation of the figure-8 with $m_{1}=.95$ (blue).

Energy behaviour

Figure: Absolute energy error vs scaled time τ for the figure- 8 choreography. Time step $\delta \tau=10^{-5}$ for 5×10^{5} steps.

Conclusion

In summary,

- binary collisions of the 3-body problem can be regularised,
- the resulting Hamiltonian is polynomial,
- monomial Hamiltonians can be integrated exactly,
- the flow of a Hamiltonian that is a sum of integrable Hamiltonians can be approximated explicitly numerically such that symplecticity is preserved, and
- the resulting explicit integrator is well behaved over large numbers of sufficiently small time steps.

Conclusion

In summary,

- binary collisions of the 3-body problem can be regularised,
- the resulting Hamiltonian is polynomial,
- monomial Hamiltonians can be integrated exactly,
- the flow of a Hamiltonian that is a sum of integrable Hamiltonians can be approximated explicitly numerical ly such that symplecticity is preserved, and
- the resulting explicit integrator is well behaved over large numbers of sufficiently small time steps.

Conclusion

In summary,

- binary collisions of the 3-body problem can be regularised,
- the resulting Hamiltonian is polynomial,
- monomial Hamiltonians can be integrated exactly,

Conclusion

In summary,

- binary collisions of the 3-body problem can be regularised,
- the resulting Hamiltonian is polynomial,
- monomial Hamiltonians can be integrated exactly,
- the flow of a Hamiltonian that is a sum of integrable Hamiltonians can be approximated explicitly numerically such that symplecticity is preserved, and
- the resulting explicit integrator is well behaved over large numbers of sufficiently small time steps.

Conclusion

In summary,

- binary collisions of the 3-body problem can be regularised,
- the resulting Hamiltonian is polynomial,
- monomial Hamiltonians can be integrated exactly,
- the flow of a Hamiltonian that is a sum of integrable Hamiltonians can be approximated explicitly numerically such that symplecticity is preserved, and
- the resulting explicit integrator is well behaved over large numbers of sufficiently small time steps.

