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Classical planar 3-body problem
Let Xj,Pj ∈ C be the positions and momenta of three point
masses mj ∈ R+, chosen such that∑

mjXj =
∑

Pj =
∑

X̄jPj = 0

centre of mass, centre of momentum and vanishing angular
momentum, respectively.
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Summation without index is over cyclic permutations of (1, 2, 3),
represented by (j, k, l).
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Classical planar 3-body problem

Hamiltonian is

H =
∑ |Pj|2

2mj
−
∑ mkml

|Xl − Xk|
.

Global dynamics are typically studied through simplified models
(circular restricted 3-body problem, elliptical restricted 3-body
problem, . . . ), submanifolds of phase space (collinear 3-body
problem, isosceles 3-body problem, equal masses, . . . ),
“special” orbits (periodic orbits in general, free-fall orbits,
choreographies, . . . ).
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Accessing collision orbits
Normally collisions are singularities and must be removed;
trajectories that result in collisions must be terminated before
the collision is reached, or all ICs (may be dense?) leading to
collisions must be removed.

Regularisation allows inclusion of binary collisions. Waldvogel
[2] gives a simultaneous regularisation of all three binary
collisions for vanishing angular momentum.
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Symmetry-reduced coordinates
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Reduce by rotational symmetries:

aj = |Xl − Xk|

is the length of the side opposite mj and

φ =
1
3

(φ1 + φ2 + φ3)

a geometric rotation angle, where

φj = arg (Xl − Xk) mod 2π

the angle of each side in an inertial frame.
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Geometry of symmetry-reduced momenta
Now obtain canonically conjugated momenta to aj and φ via a
generating function: pj, pφ ∈ R, such that

Pj = pkeiφk−pleiφl+
ipφ
3

(
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− eiφl
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These are lengths of projections of the physical momenta Pj

onto each side in the direction of the adjacent side when pφ = 0.
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Regularisation

Now define regularised coordinates αj ∈ R such that

aj = α2
k + α2

l .
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Regularised momenta
New regularised momenta are πj ∈ R obtained from a
generating function such that

pj =
1
4

(
−
πj

αj
+
πk

αk
+
πl

αl

)
.

Relationship to physical momenta is

Pj =
1
4

((
eiφk − eiφl

) πj

αj
+
(

eiφk + eiφl
)(πl

αl
− πk

αk

))
P1

P2

P3



Regularised momenta
New regularised momenta are πj ∈ R obtained from a
generating function such that

pj =
1
4

(
−
πj

αj
+
πk

αk
+
πl

αl

)
.

Relationship to physical momenta is

Pj =
1
4

((
eiφk − eiφl

) πj

αj
+
(

eiφk + eiφl
)(πl

αl
− πk

αk

))
P1

P2

P3



Scaled time
Introduce fictional time τ such that dt

dτ = a1a2a3.
Use Poincaré’s trick: new Hamiltonian is

K = (H − h) a1a2a3,

where h is the value of H along a solution, so K ≡ 0 for all
physical solutions. Now a polynomial degree 6.

K = πTB (α)π −
∑

mkmlakal − ha1a2a3

when pφ = 0, where

B =

A1 B3 B2
B3 A2 B1
B2 B1 A3


Aj =

aj

mj
α2 +

ak

mk
α2

l +
al

ml
α2

k

Bj =−
aj

mj
αkαl

α2 =α2
1 + α2

2 + α2
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Symmetries

Discrete symmetry group of un-regularised equal-mass system
is C2 × C2 × S3, order 24:

σj : permutes indices k and l

c, c2 : cycle indices by 1, 2 (c3 = I)
ρ : spatial reflection, ρ ((α,π)) = (−α,π)

τ : “time reflection”, τ ((α,π)) = (α,−π) .

Regularisation introduces new symmetries that act as identity
on physical trajectories:

sj : swaps signs of αk, αl, πk, πl simultaneously.
e.g. s1 ((α1, α2, α3, π1, π2, π3)) = (α1,−α2,−α3, π1,−π2,−π3)

New symmetry group is C2 × C2 × S4, order 96.
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Geometry of regularised space
We have j-eclipse (or j-syzygy) when αj = 0.
Call it kl-collision when αk = αl = 0.

The six planes α2
k = α2

l for each pair k, l are isosceles
configurations with ak = al.
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Collision constraints

Consider the kl-collision: αk = αl = 0 and αj 6= 0.
Now the regularised Hamiltonian gives constraints on πk and πl,
but none on πj. We have

π2
k + π2

l =
8m2

km2
l

mk + ml

So let

πk =R cos θ

πl =R sin θ,

with R = 4mkml√
2(mk+ml)

at collision.



Collision constraints

Consider the kl-collision: αk = αl = 0 and αj 6= 0.
Now the regularised Hamiltonian gives constraints on πk and πl,
but none on πj. We have

π2
k + π2

l =
8m2

km2
l

mk + ml

So let

πk =R cos θ

πl =R sin θ,

with R = 4mkml√
2(mk+ml)

at collision.



Collision constraints

Consider the kl-collision: αk = αl = 0 and αj 6= 0.
Now the regularised Hamiltonian gives constraints on πk and πl,
but none on πj. We have

π2
k + π2

l =
8m2

km2
l

mk + ml

So let

πk =R cos θ

πl =R sin θ,

with R = 4mkml√
2(mk+ml)

at collision.



Collision constraints

Consider the kl-collision: αk = αl = 0 and αj 6= 0.
Now the regularised Hamiltonian gives constraints on πk and πl,
but none on πj. We have

π2
k + π2

l =
8m2

km2
l

mk + ml

So let

πk =R cos θ

πl =R sin θ,

with R = 4mkml√
2(mk+ml)

at collision.



Vector field at 23-collision

Let z = (α1, α2, α3, π1, π2, π3)T be the phase space of shape
variables. At 23-collision, the vector field becomes

ż→


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Recall pj = 1
4

(
− πj

αj
+ πk

αk
+ πl

αl

)
and, when pφ vanishes,

Pj = pkeiφk − pleiφl .

=⇒ Pj =
1
4

((
eiφk − eiφl

) πj

αj
+
(

eiφk + eiφl
)(πl

αl
− πk

αk

))
.

Now series expansions of α2, α3, π2, π3 with 23-collision at
τ = 0 give

π2

α2
− π3

α3
→ π1 (m2 − m3)

2α1 (m2 + m3)

as τ → 0, confirming that p2, p3 and therefore
P1 →

(
eiφ2 − eiφ3

)
π1

4α1
are finite. (Confirms intuition!)
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Observation about P1 when pφ = 0

Since P1 →
(
eiφ2 − eiφ3

)
π1

4α1
, note at collision that φ2 − φ3 → π

mod 2π, as a2 and a3 coincide at that instant.

φ2

φ3

a2
a3

Furthermore,
(
eiφ2 − eiφ3

)
points from incentre to X1.

Consequently, P1 → 0 as τ → 0 is possible only when (a)
pφ = 0 and (b) if π1 → 0 as τ → 0, otherwise (a) some nonzero
transverse component exists or (b) some parallel component
exists.
Call this a brake-collision when π1 → 0 as τ → 0. (Analogous to
brake-point when P1 = P2 = P3 = 0 instantaneously.)
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Investigation of brake-collisions

Suppose now that at τ = 0 we have α2 = α3 = π1 = 0, α1 6= 0,
π2 = R cos θ and π3 = R sin θ: 23-brake-collision conditions.
Vector field becomes

ż→
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We have from the full vector field that

α̇1 (α1, α2, α3, π1, π2, π3) = −α̇1 (α1,−α2,−α3,−π1, π2, π3)

α̇2 (α1, α2, α3, π1, π2, π3) = α̇2 (α1,−α2,−α3,−π1, π2, π3)

α̇3 (α1, α2, α3, π1, π2, π3) = α̇3 (α1,−α2,−α3,−π1, π2, π3)

π̇1 (α1, α2, α3, π1, π2, π3) = π̇1 (α1,−α2,−α3,−π1, π2, π3)

π̇2 (α1, α2, α3, π1, π2, π3) = −π̇2 (α1,−α2,−α3,−π1, π2, π3)

π̇3 (α1, α2, α3, π1, π2, π3) = −π̇3 (α1,−α2,−α3,−π1, π2, π3)

and at 23-brake-collision α2 = α3 = π1 = 0, α1 6= 0, π2 = R cos θ
and π3 = R sin θ.
This and time reversibility of solutions to Hamilton’s equations
implies that α1, π2 and π3 are even functions and π1, α2 and α3
are odd functions about the 23-brake-collision.
I.e. acting like s1 ◦ τ symmetry, or time-reversing, as recall sj act
as the identity on physical trajectories.
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Consequences

Lemma
An orbit with two brake-collisions, two brake-points or a
brake-collision and a brake-point must be periodic.

Proof.
Brake-collisions (and brake-points) cause the masses to trace
backwards over their physical trajectories. Any trajectory that
joins two such points can only be periodic.

Corollary
No periodic orbit can have more than two different “types” of
brake-collisions.
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Types of periodic collision orbits: isosceles

Definition
A kl-isosceles orbit is an orbit on either of the invariant
manifolds where αk = ±αl and πk = ±πl, requiring that mk = ml.

These manifolds intersect only with the αj-axis. I.e. αk = αl = 0,
so only kl-collisions may (and must) occur for such orbits.
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Types of periodic collision orbits: collinear

Definition
A j-collinear orbit is an orbit on the invariant manifold
αj = πj = 0.

This manifold intersects with the αk- and αl-axes, so both jk-
and jl-collisions may (must) occur.
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I Type-0: no collisions;
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evidence so far that type-3 orbits exist.
Interestingly, so far no periodic collision orbit has appeared that
was not a brake-collision orbit if it was not also either isosceles
or collinear.
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Some numerical results
A symplectic numerical scheme exists [1] to integrate the
regularised system. Using an appropriate Poincaré section and
Newton’s method, we find periodic orbits.

I Collinear orbits turn up commonly;
I Isosceles orbits are less common;
I Type-1 and type-2 orbits are not uncommon;
I Some are stable!
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