Binary collisions in the planar 3-body problem with vanishing angular momentum

Danya Rose, joint work with Holger Dullin

ANZIAM 2014

Classical planar 3-body problem

Let $X_{j}, P_{j} \in \mathbb{C}$ be the positions and momenta of three point masses $m_{j} \in \mathbb{R}^{+}$, chosen such that

$$
\sum m_{j} X_{j}=\sum P_{j}=\sum \bar{X}_{j} P_{j}=0
$$

centre of mass, centre of momentum and vanishing angular momentum, respectively.

Classical planar 3-body problem

Let $X_{j}, P_{j} \in \mathbb{C}$ be the positions and momenta of three point masses $m_{j} \in \mathbb{R}^{+}$, chosen such that

$$
\sum m_{j} X_{j}=\sum P_{j}=\sum \bar{X}_{j} P_{j}=0
$$

centre of mass, centre of momentum and vanishing angular momentum, respectively.

Summation without index is over cyclic permutations of $(1,2,3)$, represented by (j, k, l).

Classical planar 3-body problem

Hamiltonian is

$$
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|}
$$

Global dynamics are typically studied through simplified models (circular restricted 3-body problem, elliptical restricted 3-body problem, ...), submanifolds of phase space (collinear 3-body problem, isosceles 3-body problem, equal masses, ...), "special" orbits (periodic orbits in general, free-fall orbits, choreographies, ...).

Classical planar 3-body problem

Hamiltonian is

$$
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|}
$$

Global dynamics are typically studied through simplified models (circular restricted 3-body problem, elliptical restricted 3-body problem, ...), submanifolds of phase space (collinear 3-body
problem, isosceles 3-body problem, equal masses,
"special" orbits (periodic orbits in general, free-fall orbits, choreographies,

Classical planar 3-body problem

Hamiltonian is

$$
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|}
$$

Global dynamics are typically studied through simplified models (circular restricted 3-body problem, elliptical restricted 3-body problem, ...), submanifolds of phase space (collinear 3-body problem, isosceles 3-body problem, equal masses, ...),

Classical planar 3-body problem

Hamiltonian is

$$
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|}
$$

Global dynamics are typically studied through simplified models (circular restricted 3-body problem, elliptical restricted 3-body problem, ...), submanifolds of phase space (collinear 3-body problem, isosceles 3-body problem, equal masses, ...), "special" orbits (periodic orbits in general, free-fall orbits, choreographies, ...).

Accessing collision orbits

Normally collisions are singularities and must be removed; trajectories that result in collisions must be terminated before the collision is reached, or all ICs (may be dense?) leading to collisions must be removed.

Regularisation allows inclusion of binary collisions. Waldvogel
[2] gives a simultaneous regularisation of all three binary
collisions for vanishing angular momentum.

Accessing collision orbits

Normally collisions are singularities and must be removed; trajectories that result in collisions must be terminated before the collision is reached, or all ICs (may be dense?) leading to collisions must be removed.

Regularisation allows inclusion of binary collisions.
[2] gives a simultaneous regularisation of all three binary
collisions for vanishing angular momentum.

Accessing collision orbits

Normally collisions are singularities and must be removed; trajectories that result in collisions must be terminated before the collision is reached, or all ICs (may be dense?) leading to collisions must be removed.

Regularisation allows inclusion of binary collisions. Waldvogel [2] gives a simultaneous regularisation of all three binary collisions for vanishing angular momentum.

Symmetry-reduced coordinates

Reduce by rotational symmetries:

$$
a_{j}=\left|X_{l}-X_{k}\right|
$$

is the length of the side opposite m_{j} and
a geometric rotation angle, where

$$
\phi_{j}=\arg \left(X_{l}-X_{k}\right) \quad \bmod 2 \pi
$$

Symmetry-reduced coordinates

Reduce by rotational symmetries:

$$
a_{j}=\left|X_{l}-X_{k}\right|
$$

is the length of the side opposite m_{j} and

$$
\phi=\frac{1}{3}\left(\phi_{1}+\phi_{2}+\phi_{3}\right)
$$

a geometric rotation angle, where

$$
\phi_{j}=\arg \left(X_{l}-X_{k}\right) \quad \bmod 2 \pi
$$

the angle of each side in an inertial frame.

Geometry of symmetry-reduced momenta

Now obtain canonically conjugated momenta to a_{j} and ϕ via a generating function: $p_{j}, p_{\phi} \in \mathbb{R}$, such that

$$
P_{j}=p_{k} e^{i \phi_{k}}-p_{l} e^{i \phi_{l}}+\frac{i p_{\phi}}{3}\left(\frac{e^{i \phi_{k}}}{a_{k}}-\frac{e^{i \phi_{l}}}{a_{l}}\right)
$$

These are lengths of projections of the physical momenta P_{j}

Geometry of symmetry-reduced momenta

Now obtain canonically conjugated momenta to a_{j} and ϕ via a generating function: $p_{j}, p_{\phi} \in \mathbb{R}$, such that

$$
P_{j}=p_{k} e^{i \phi_{k}}-p_{l} e^{i \phi_{l}}+\frac{i p_{\phi}}{3}\left(\frac{e^{i \phi_{k}}}{a_{k}}-\frac{e^{i \phi_{l}}}{a_{l}}\right)
$$

These are lengths of projections of the physical momenta P_{j} onto each side in the direction of the adjacent side when $p_{\phi}=0$.

Regularisation

Now define regularised coordinates $\alpha_{j} \in \mathbb{R}$ such that

$$
a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}
$$

Regularised momenta

New regularised momenta are $\pi_{j} \in \mathbb{R}$ obtained from a generating function such that

$$
p_{j}=\frac{1}{4}\left(-\frac{\pi_{j}}{\alpha_{j}}+\frac{\pi_{k}}{\alpha_{k}}+\frac{\pi_{l}}{\alpha_{l}}\right) .
$$

Relationship to physical momenta is

Regularised momenta

New regularised momenta are $\pi_{j} \in \mathbb{R}$ obtained from a generating function such that

$$
p_{j}=\frac{1}{4}\left(-\frac{\pi_{j}}{\alpha_{j}}+\frac{\pi_{k}}{\alpha_{k}}+\frac{\pi_{l}}{\alpha_{l}}\right) .
$$

Relationship to physical momenta is

$$
P_{j}=\frac{1}{4}\left(\left(e^{i \phi_{k}}-e^{i \phi_{l}}\right) \frac{\pi_{j}}{\alpha_{j}}+\left(e^{i \phi_{k}}+e^{i \phi_{l}}\right)\left(\frac{\pi_{l}}{\alpha_{l}}-\frac{\pi_{k}}{\alpha_{k}}\right)\right)
$$

Scaled time

Introduce fictional time τ such that $\frac{\mathrm{d} t}{\mathrm{~d} \tau}=a_{1} a_{2} a_{3}$.
Use Poincaré's trick: new Hamiltonian is

$$
K=(H-h) a_{1} a_{2} a_{3},
$$

where h is the value of H along a solution, so $K \equiv 0$ for all physical solutions. Now a polynomial degree 6.

$$
K=\pi^{T} B(\boldsymbol{\alpha}) \pi-\sum m_{k} m_{l} a_{k} a_{l}-h a_{1} a_{2} a_{3}
$$

when $p_{\phi}=0$, where

Scaled time

Introduce fictional time τ such that $\frac{\mathrm{dt}}{\mathrm{d} \tau}=a_{1} a_{2} a_{3}$.
Use Poincaré's trick: new Hamiltonian is

$$
K=(H-h) a_{1} a_{2} a_{3},
$$

where h is the value of H along a solution, so $K \equiv 0$ for all physical solutions. Now a polynomial degree 6.

when $p_{\phi}=0$, where

Scaled time

Introduce fictional time τ such that $\frac{\mathrm{d} t}{\mathrm{~d} \tau}=a_{1} a_{2} a_{3}$. Use Poincaré's trick: new Hamiltonian is

$$
K=(H-h) a_{1} a_{2} a_{3}
$$

where h is the value of H along a solution, so $K \equiv 0$ for all physical solutions. Now a polynomial degree 6.

$$
K=\boldsymbol{\pi}^{T} B(\boldsymbol{\alpha}) \boldsymbol{\pi}-\sum m_{k} m_{l} a_{k} a_{l}-h a_{1} a_{2} a_{3}
$$

when $p_{\phi}=0$,

Scaled time

Introduce fictional time τ such that $\frac{\mathrm{d} t}{\mathrm{~d} \tau}=a_{1} a_{2} a_{3}$.
Use Poincaré's trick: new Hamiltonian is

$$
K=(H-h) a_{1} a_{2} a_{3}
$$

where h is the value of H along a solution, so $K \equiv 0$ for all physical solutions. Now a polynomial degree 6.

$$
K=\boldsymbol{\pi}^{T} B(\boldsymbol{\alpha}) \boldsymbol{\pi}-\sum m_{k} m_{l} a_{k} a_{l}-h a_{1} a_{2} a_{3}
$$

when $p_{\phi}=0$, where

$$
\begin{aligned}
B & =\left(\begin{array}{lll}
A_{1} & B_{3} & B_{2} \\
B_{3} & A_{2} & B_{1} \\
B_{2} & B_{1} & A_{3}
\end{array}\right) \\
A_{j} & =\frac{a_{j}}{m_{j}} \alpha^{2}+\frac{a_{k}}{m_{k}} \alpha_{l}^{2}+\frac{a_{l}}{m_{l}} \alpha_{k}^{2} \\
B_{j} & =-\frac{a_{j}}{m_{j}} \alpha_{k} \alpha_{l} \\
\alpha^{2} & =\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}
\end{aligned}
$$

Symmetries

Discrete symmetry group of un-regularised equal-mass system is $C_{2} \times C_{2} \times S_{3}$, order 24:
$\sigma_{j}:$ permutes indices k and l
$c, c^{2}:$ cycle indices by $1,2\left(c^{3}=I\right)$
$\rho:$ spatial reflection, $\rho((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(-\boldsymbol{\alpha}, \boldsymbol{\pi})$
$\tau:$ "time reflection", $\tau((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(\boldsymbol{\alpha},-\boldsymbol{\pi})$.

Regularisation introduces new symmetries that act as identity on physical trajectories:
s_{j} : swaps signs of $\alpha_{k}, \alpha_{l}, \pi_{k}, \pi_{l}$ simultaneously. e.g. $s_{1}\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)$

New symmetry group is $C_{2} \times C_{2} \times S_{4}$, order 96 .

Symmetries

Discrete symmetry group of un-regularised equal-mass system is $C_{2} \times C_{2} \times S_{3}$, order 24:
$\sigma_{j}:$ permutes indices k and l
c, c^{2} : cycle indices by $1,2\left(c^{3}=I\right)$
$\rho:$ spatial reflection, $\rho((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(-\boldsymbol{\alpha}, \boldsymbol{\pi})$
τ : "time reflection", $\tau((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(\boldsymbol{\alpha},-\boldsymbol{\pi})$.
Regularisation introduces new symmetries that act as identity on physical trajectories:
s_{j} : swaps signs of $\alpha_{k}, \alpha_{l}, \pi_{k}, \pi_{l}$ simultaneously.

New symmetry group is $C_{2} \times C_{2} \times S_{4}$, order 96 .

Symmetries

Discrete symmetry group of un-regularised equal-mass system is $C_{2} \times C_{2} \times S_{3}$, order 24:
$\sigma_{j}:$ permutes indices k and l
c, c^{2} : cycle indices by $1,2\left(c^{3}=I\right)$
$\rho:$ spatial reflection, $\rho((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(-\boldsymbol{\alpha}, \boldsymbol{\pi})$
τ : "time reflection", $\tau((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(\boldsymbol{\alpha},-\boldsymbol{\pi})$.
Regularisation introduces new symmetries that act as identity on physical trajectories:

New symmetry group is $C_{2} \times C_{2} \times S_{4}$, order 96 .

Symmetries

Discrete symmetry group of un-regularised equal-mass system is $C_{2} \times C_{2} \times S_{3}$, order 24:
σ_{j} : permutes indices k and l c, c^{2} : cycle indices by $1,2\left(c^{3}=I\right)$
$\rho:$ spatial reflection, $\rho((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(-\boldsymbol{\alpha}, \boldsymbol{\pi})$
τ : "time reflection", $\tau((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(\boldsymbol{\alpha},-\boldsymbol{\pi})$.
Regularisation introduces new symmetries that act as identity on physical trajectories:
s_{j} : swaps signs of $\alpha_{k}, \alpha_{l}, \pi_{k}, \pi_{l}$ simultaneously.

$$
\text { e.g. } s_{1}\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)
$$

New symmetry group is $C_{2} \times C_{2} \times S_{4}$, order 96 .

Symmetries

Discrete symmetry group of un-regularised equal-mass system is $C_{2} \times C_{2} \times S_{3}$, order 24:
σ_{j} : permutes indices k and l c, c^{2} : cycle indices by $1,2\left(c^{3}=I\right)$
$\rho:$ spatial reflection, $\rho((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(-\boldsymbol{\alpha}, \boldsymbol{\pi})$
$\tau:$ "time reflection", $\tau((\boldsymbol{\alpha}, \boldsymbol{\pi}))=(\boldsymbol{\alpha},-\boldsymbol{\pi})$.
Regularisation introduces new symmetries that act as identity on physical trajectories:
s_{j} : swaps signs of $\alpha_{k}, \alpha_{l}, \pi_{k}, \pi_{l}$ simultaneously.

$$
\text { e.g. } s_{1}\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)
$$

New symmetry group is $C_{2} \times C_{2} \times S_{4}$, order 96 .

Geometry of regularised space

We have j-eclipse (or j-syzygy) when $\alpha_{j}=0$.
Call it $k l$-collision when $\alpha_{k}=\alpha_{l}=0$.

The six planes $\alpha_{k}^{2}=\alpha_{l}^{2}$ for each pair k, l are isosceles configurations with $a_{k}=a_{l}$.

Geometry of regularised space

We have j-eclipse (or j-syzygy) when $\alpha_{j}=0$.
Call it $k l$-collision when $\alpha_{k}=\alpha_{l}=0$.

The six planes $\alpha_{k}^{2}=\alpha_{l}^{2}$ for each pair k, l are isosceles configurations with $a_{k}=a_{l}$.

Geometry of regularised space

We have j-eclipse (or j-syzygy) when $\alpha_{j}=0$.
Call it $k l$-collision when $\alpha_{k}=\alpha_{l}=0$.

The six planes $\alpha_{k}^{2}=\alpha_{l}^{2}$ for each pair k, l are isosceles configurations with $a_{k}=a_{l}$.

Collision constraints

Consider the kl-collision: $\alpha_{k}=\alpha_{l}=0$ and $\alpha_{j} \neq 0$.
Now the regularised Hamiltonian gives constraints on π_{k} and π_{l}, but none on π_{j}. We have

So let
$\pi_{k}=R \cos \theta$
$\pi_{l}=R \sin \theta$.
with $R=\frac{4 m_{k} m_{l}}{\sqrt{2\left(m_{k}+m_{l}\right)}}$ at collision.

Collision constraints

Consider the kl-collision: $\alpha_{k}=\alpha_{l}=0$ and $\alpha_{j} \neq 0$. Now the regularised Hamiltonian gives constraints on π_{k} and π_{l}, but none on π_{j}. We have

So let
$\pi_{k}=R \cos \theta$
$\pi=\boldsymbol{R} \sin \theta$,
with $R=\frac{4 m_{k} m_{l}}{\sqrt{2\left(m_{k}+m_{l}\right)}}$ at collision.

Collision constraints

Consider the kl-collision: $\alpha_{k}=\alpha_{l}=0$ and $\alpha_{j} \neq 0$.
Now the regularised Hamiltonian gives constraints on π_{k} and π_{l}, but none on π_{j}. We have

$$
\pi_{k}^{2}+\pi_{l}^{2}=\frac{8 m_{k}^{2} m_{l}^{2}}{m_{k}+m_{l}}
$$

So let

$\pi_{k}=R \cos \theta$
$\pi_{r}=\boldsymbol{R} \sin \theta$,
with $R=\frac{4 m_{k} m_{l}}{\sqrt{2\left(m_{k}+m_{l}\right)}}$ at collision.

Collision constraints

Consider the $k l$-collision: $\alpha_{k}=\alpha_{l}=0$ and $\alpha_{j} \neq 0$.
Now the regularised Hamiltonian gives constraints on π_{k} and π_{l}, but none on π_{j}. We have

$$
\pi_{k}^{2}+\pi_{l}^{2}=\frac{8 m_{k}^{2} m_{l}^{2}}{m_{k}+m_{l}}
$$

So let

$$
\begin{aligned}
\pi_{k} & =R \cos \theta \\
\pi_{l} & =R \sin \theta
\end{aligned}
$$

with $R=\frac{4 m_{k} m_{l}}{\sqrt{2\left(m_{k}+m_{l}\right)}}$ at collision.

Vector field at 23-collision

Let $z=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)^{T}$ be the phase space of shape variables. At 23-collision, the vector field becomes

$$
\dot{z} \rightarrow\left(\begin{array}{c}
0 \\
\frac{1}{4} \alpha_{1}^{4} \pi_{2}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) \\
\frac{1}{4} \alpha_{1}^{4} \pi_{3}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) \\
0 \\
\frac{\alpha_{1}^{3} \pi_{1} \pi_{2}}{4 m_{3}} \\
\frac{\alpha_{1}^{4} 1_{1} \pi_{3}}{4 m_{2}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\frac{1}{4} \alpha_{1}^{4}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) R \cos \theta \\
\frac{1}{4} \alpha_{1}^{4}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) R \sin \theta \\
0 \\
\frac{\alpha_{1}^{3} \pi_{1} R}{4 m_{3}} \cos \theta \\
\frac{\alpha_{1}^{3} \pi_{1} R}{4 m_{2}} \sin \theta
\end{array}\right)
$$

Recall $p_{j}=\frac{1}{4}\left(-\frac{\pi_{j}}{\alpha_{j}}+\frac{\pi_{k}}{\alpha_{k}}+\frac{\pi_{l}}{\alpha_{l}}\right)$ and, when p_{ϕ} vanishes,
$P_{j}=p_{k} e^{i \phi_{k}}-p_{l} e^{i \phi_{l}}$.

Now series expansions of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$ with 23-collision at
$\tau=0$ give

as $\tau \rightarrow 0$, confirming that p_{2}, p_{3} and therefore $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$ are finite. (Confirms intuition!)

Recall $p_{j}=\frac{1}{4}\left(-\frac{\pi_{j}}{\alpha_{j}}+\frac{\pi_{k}}{\alpha_{k}}+\frac{\pi_{l}}{\alpha_{l}}\right)$ and, when p_{ϕ} vanishes,
$P_{j}=p_{k} e^{i \phi_{k}}-p_{l} e^{i \phi_{l}}$.

$$
\Longrightarrow P_{j}=\frac{1}{4}\left(\left(e^{i \phi_{k}}-e^{i \phi_{l}}\right) \frac{\pi_{j}}{\alpha_{j}}+\left(e^{i \phi_{k}}+e^{i \phi_{l}}\right)\left(\frac{\pi_{l}}{\alpha_{l}}-\frac{\pi_{k}}{\alpha_{k}}\right)\right) .
$$

Now series expansions of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$ with 23 -collision at $\tau=0$ give

as $\tau \rightarrow 0$, confirming that p_{2}, p_{3} and therefore $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$ are finite. (Confirms intuition!)

Recall $p_{j}=\frac{1}{4}\left(-\frac{\pi_{j}}{\alpha_{j}}+\frac{\pi_{k}}{\alpha_{k}}+\frac{\pi_{l}}{\alpha_{l}}\right)$ and, when p_{ϕ} vanishes, $P_{j}=p_{k} e^{i \phi_{k}}-p_{l} e^{i \phi_{l}}$.

$$
\Longrightarrow P_{j}=\frac{1}{4}\left(\left(e^{i \phi_{k}}-e^{i \phi_{l}}\right) \frac{\pi_{j}}{\alpha_{j}}+\left(e^{i \phi_{k}}+e^{i \phi_{l}}\right)\left(\frac{\pi_{l}}{\alpha_{l}}-\frac{\pi_{k}}{\alpha_{k}}\right)\right) .
$$

Now series expansions of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$ with 23 -collision at $\tau=0$ give

$$
\frac{\pi_{2}}{\alpha_{2}}-\frac{\pi_{3}}{\alpha_{3}} \rightarrow \frac{\pi_{1}\left(m_{2}-m_{3}\right)}{2 \alpha_{1}\left(m_{2}+m_{3}\right)}
$$

as $\tau \rightarrow 0$, confirming that p_{2}, p_{3} and therefore $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$ are finite. (Confirms intuition!)

Observation about P_{1} when $p_{\phi}=0$

Since $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$, note at collision that $\phi_{2}-\phi_{3} \rightarrow \pi$ $\bmod 2 \pi$, as a_{2} and a_{3} coincide at that instant.

Furthermore, $\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right)$ points from incentre to X_{1}. Consequently, $P_{1} \rightarrow 0$ as $\tau \rightarrow 0$ is possible only when (a) $p_{\phi}=0$ and (b) if $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$, otherwise (a) some nonzero transverse component exists or (b) some parallel component exists.
Call this a brake-collision when $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$. (Analogous to brake-point when $P_{1}=P_{2}=P_{3}=0$ instantaneously.)

Observation about P_{1} when $p_{\phi}=0$

Since $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$, note at collision that $\phi_{2}-\phi_{3} \rightarrow \pi$ $\bmod 2 \pi$, as a_{2} and a_{3} coincide at that instant.

Furthermore, $\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right)$ points from incentre to X_{1}.

> Consequently, $P_{1} \rightarrow 0$ as $\tau \rightarrow 0$ is possible only when (a) $p_{\phi}=0$ and (b) if $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$, otherwise (a) some nonzero transverse component exists or (b) some parallel component exists.
> Call this a brake-collision when $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$. (Analogous to brake-point when $P_{1}=P_{2}=P_{3}=0$ instantaneously.)

Observation about P_{1} when $p_{\phi}=0$

Since $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$, note at collision that $\phi_{2}-\phi_{3} \rightarrow \pi$ $\bmod 2 \pi$, as a_{2} and a_{3} coincide at that instant.

Furthermore, ($e^{i \phi_{2}}-e^{i \phi_{3}}$) points from incentre to X_{1}. Consequently, $P_{1} \rightarrow 0$ as $\tau \rightarrow 0$ is possible only when (a) $p_{\phi}=0$ and (b) if $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$, otherwise (a) some nonzero transverse component exists or (b) some parallel component exists.
Call this a brake-collision when $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$. (Analogous to
brake-point when $P_{1}=P_{2}=P_{3}=0$ instantaneously.)

Observation about P_{1} when $p_{\phi}=0$

Since $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$, note at collision that $\phi_{2}-\phi_{3} \rightarrow \pi$ $\bmod 2 \pi$, as a_{2} and a_{3} coincide at that instant.

Furthermore, ($\left.e^{i \phi_{2}}-e^{i \phi_{3}}\right)$ points from incentre to X_{1}. Consequently, $P_{1} \rightarrow 0$ as $\tau \rightarrow 0$ is possible only when (a) $p_{\phi}=0$ and (b) if $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$, otherwise (a) some nonzero transverse component exists or (b) some parallel component exists.
Call this a brake-collision when $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$.

Observation about P_{1} when $p_{\phi}=0$

Since $P_{1} \rightarrow\left(e^{i \phi_{2}}-e^{i \phi_{3}}\right) \frac{\pi_{1}}{4 \alpha_{1}}$, note at collision that $\phi_{2}-\phi_{3} \rightarrow \pi$ $\bmod 2 \pi$, as a_{2} and a_{3} coincide at that instant.

Furthermore, ($e^{i \phi_{2}}-e^{i \phi_{3}}$) points from incentre to X_{1}.
Consequently, $P_{1} \rightarrow 0$ as $\tau \rightarrow 0$ is possible only when (a) $p_{\phi}=0$ and (b) if $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$, otherwise (a) some nonzero transverse component exists or (b) some parallel component exists.
Call this a brake-collision when $\pi_{1} \rightarrow 0$ as $\tau \rightarrow 0$. (Analogous to brake-point when $P_{1}=P_{2}=P_{3}=0$ instantaneously.)

Investigation of brake－collisions

Suppose now that at $\tau=0$ we have $\alpha_{2}=\alpha_{3}=\pi_{1}=0, \alpha_{1} \neq 0$ ， $\pi_{2}=R \cos \theta$ and $\pi_{3}=R \sin \theta: 23$－brake－collision conditions．
Vector field becomes

Investigation of brake-collisions

Suppose now that at $\tau=0$ we have $\alpha_{2}=\alpha_{3}=\pi_{1}=0, \alpha_{1} \neq 0$, $\pi_{2}=R \cos \theta$ and $\pi_{3}=R \sin \theta: 23$-brake-collision conditions.
Vector field becomes

$$
\dot{z} \rightarrow\left(\begin{array}{c}
0 \\
\frac{1}{4} \alpha_{1}^{4} \pi_{2}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) \\
\frac{1}{4} \alpha_{1}^{4} \pi_{3}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
\frac{1}{4} \alpha_{1}^{4}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) R \cos \theta \\
\frac{1}{4} \alpha_{1}^{4}\left(\frac{1}{m_{2}}+\frac{1}{m_{3}}\right) R \sin \theta \\
0 \\
0 \\
0
\end{array}\right)
$$

We have from the full vector field that

$$
\begin{aligned}
& \dot{\alpha}_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\alpha}_{1}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\alpha}_{2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\alpha}_{2}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\alpha}_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\alpha}_{3}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\pi}_{1}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\pi}_{2}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\pi}_{3}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right)
\end{aligned}
$$

and at 23-brake-collision $\alpha_{2}=\alpha_{3}=\pi_{1}=0, \alpha_{1} \neq 0, \pi_{2}=R \cos \theta$ and $\pi_{3}=R \sin \theta$.
This and time reversibility of solutions to Hamilton's equations implies that α_{1}, π_{2} and π_{3} are even functions and π_{1}, α_{2} and α_{3} are odd functions about the 23-brake-collision.
l.e. acting like $s_{1} \circ \tau$ symmetry, or time-reversing, as recall s_{j} act as the identity on physical trajectories.

We have from the full vector field that

$$
\begin{aligned}
& \dot{\alpha}_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\alpha}_{1}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\alpha}_{2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\alpha}_{2}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\alpha}_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\alpha}_{3}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\pi}_{1}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\pi}_{2}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\pi}_{3}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right)
\end{aligned}
$$

and at 23-brake-collision $\alpha_{2}=\alpha_{3}=\pi_{1}=0, \alpha_{1} \neq 0, \pi_{2}=R \cos \theta$ and $\pi_{3}=R \sin \theta$.
This and time reversibility of solutions to Hamilton's equations implies that α_{1}, π_{2} and π_{3} are even functions and π_{1}, α_{2} and α_{3} are odd functions about the 23-brake-collision.
as the identity on physical trajectories.

We have from the full vector field that

$$
\begin{aligned}
& \dot{\alpha}_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\alpha}_{1}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\alpha}_{2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\alpha}_{2}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\alpha}_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\quad \dot{\alpha}_{3}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\dot{\pi}_{1}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\pi}_{2}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right) \\
& \dot{\pi}_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\dot{\pi}_{3}\left(\alpha_{1},-\alpha_{2},-\alpha_{3},-\pi_{1}, \pi_{2}, \pi_{3}\right)
\end{aligned}
$$

and at 23-brake-collision $\alpha_{2}=\alpha_{3}=\pi_{1}=0, \alpha_{1} \neq 0, \pi_{2}=R \cos \theta$ and $\pi_{3}=R \sin \theta$.
This and time reversibility of solutions to Hamilton's equations implies that α_{1}, π_{2} and π_{3} are even functions and π_{1}, α_{2} and α_{3} are odd functions about the 23-brake-collision.
l.e. acting like $s_{1} \circ \tau$ symmetry, or time-reversing, as recall s_{j} act as the identity on physical trajectories.

Consequences

Lemma
An orbit with two brake-collisions, two brake-points or a brake-collision and a brake-point must be periodic.

Proof.
Brake-collisions (and brake-points) cause the masses to trace backwards over their physical trajectories. Any trajectory that joins two such points can on'y be periodic.

Corollary
No periodic orbit can have more than two different "types" of brake-collisions.

Consequences

Lemma

An orbit with two brake-collisions, two brake-points or a brake-collision and a brake-point must be periodic.

Proof.
Brake-collisions (and brake-points) cause the masses to trace backwards over their physical trajectories. Any trajectory that joins two such points can only be periodic.

No periodic orbit can have more than two different "types" of brake-collisions.

Consequences

Lemma

An orbit with two brake-collisions, two brake-points or a brake-collision and a brake-point must be periodic.

Proof.
Brake-collisions (and brake-points) cause the masses to trace backwards over their physical trajectories. Any trajectory that joins two such points can only be periodic.

Corollary
No periodic orbit can have more than two different "types" of brake-collisions.

Types of periodic collision orbits: isosceles

Definition
A kl-isosceles orbit is an orbit on either of the invariant manifolds where $\alpha_{k}= \pm \alpha_{l}$ and $\pi_{k}= \pm \pi_{l}$, requiring that $m_{k}=m_{l}$.

These manifolds intersect only with the α_{j}-axis. I.e. $\alpha_{k}=\alpha_{l}=0$, so only kl-collisions may (and must) occur for such orbits.

Types of periodic collision orbits: isosceles

Definition
A kl-isosceles orbit is an orbit on either of the invariant manifolds where $\alpha_{k}= \pm \alpha_{l}$ and $\pi_{k}= \pm \pi_{l}$, requiring that $m_{k}=m_{l}$.

These manifolds intersect only with the α_{j}-axis. I.e. $\alpha_{k}=\alpha_{l}=0$, so only $k l$-collisions may (and must) occur for such orbits.

Types of periodic collision orbits: collinear

Definition

A j-collinear orbit is an orbit on the invariant manifold $\alpha_{j}=\pi_{j}=0$.

This manifold intersects with the α_{k} - and α_{l}-axes, so both $j k$ and $j l$-collisions may (must) occur.

Types of periodic collision orbits: other cases

Classify orbits by number of collisions. Possibilities are:

- Type-0: no collisions;

Types of periodic collision orbits: other cases

Classify orbits by number of collisions. Possibilities are:

- Type-1: trajectory passes through exactly one axis (isosceles or not);

Types of periodic collision orbits: other cases

Classify orbits by number of collisions. Possibilities are:

- Type-2: trajectory passes through exactly two axes (collinear or not);

Types of periodic collision orbits: other cases

Classify orbits by number of collisions. Possibilities are: Type-3: trajectory passes through all three axes.

> So far in numerical work, only encountered types 0, 1, 2. No evidence so far that type-3 orbits exist.
> Interestingly, so far no periodic collision orbit has appeared that was not a brake-collision orbit if it was not also either isosceles or collinear.

Types of periodic collision orbits: other cases

Classify orbits by number of collisions. Possibilities are: Type-3: trajectory passes through all three axes. So far in numerical work, only encountered types $0,1,2$. No evidence so far that type-3 orbits exist.
Interestingly, so far no periodic collision orbit has appeared that
was not a brake-collision orbit if it was not also either isosceles
or collinear.

Types of periodic collision orbits: other cases

Classify orbits by number of collisions. Possibilities are:
Type-3: trajectory passes through all three axes.
So far in numerical work, only encountered types 0, 1, 2. No evidence so far that type-3 orbits exist.
Interestingly, so far no periodic collision orbit has appeared that was not a brake-collision orbit if it was not also either isosceles or collinear.

Some numerical results

A symplectic numerical scheme exists [1] to integrate the regularised system. Using an appropriate Poincaré section and Newton's method, we find periodic orbits.

- Collinear orbits turn up commonly;
- Isosceles orbits are less common;
- Type-1 and type-2 orbits are not uncommon;
- Some are stable!

Some numerical results

A symplectic numerical scheme exists [1] to integrate the regularised system. Using an appropriate Poincaré section and Newton's method, we find periodic orbits.

- Collinear orbits turn up commonly;
- Isosceles orbits are less common;
- Type-1 and type-2 orbits are not uncommon;
- Some are stable!

Some numerical results

A symplectic numerical scheme exists [1] to integrate the regularised system. Using an appropriate Poincaré section and Newton's method, we find periodic orbits.

- Collinear orbits turn up commonly;
- Isosceles orbits are less common;
- Type-1 and type-2 orbits are not uncommon;
- Some are stable!

Some numerical results

A symplectic numerical scheme exists [1] to integrate the regularised system. Using an appropriate Poincaré section and Newton's method, we find periodic orbits.

- Collinear orbits turn up commonly;
- Isosceles orbits are less common;
- Type-1 and type-2 orbits are not uncommon;

Some numerical results

A symplectic numerical scheme exists [1] to integrate the regularised system. Using an appropriate Poincaré section and Newton's method, we find periodic orbits.

- Collinear orbits turn up commonly;
- Isosceles orbits are less common;
- Type-1 and type-2 orbits are not uncommon;
- Some are stable!

References

R Danya Rose and Holger R. Dullin.
A symplectic integrator for the symmetry reduced and regularised planar 3-body problem with vanishing angular momentum.
Celestial Mechanics and Dynamical Astronomy, 117(2):169-185, 2013.

固 Jörg Waldvogel.
Symmetric and regularized coordinates on the plane triple collision manifold.
Celestial Mechanics, 28:69-82, 1982.

